

Emissions Testing Report 2013-14

National Ceramic Industries Australia

NATA ACCREDITATION No. 2778 (14391)

Accredited for compliance with ISO/IEC 17025

This document is issued in accordance with NATA's accreditation requirements.

This document may not be reproduced except in full.

Emissions Testing Report 2013-14

National Ceramic Industries Australia

Client: National Ceramic Industries Australia

ABN: 83100467267

Prepared by

AECOM Australia Pty Ltd

17 Warabrook Boulevard, Warabrook NSW 2304, PO Box 73, Hunter Region MC NSW 2310, Australia T +61 2 4911 4900 F +61 2 4911 4999 www.aecom.com

ABN 20 093 846 925

05-May-2014

Job No.: 60305580

AECOM in Australia and New Zealand is certified to the latest version of ISO9001, ISO14001, AS/NZS4801 and OHSAS18001.

© AECOM Australia Pty Ltd (AECOM). All rights reserved.

AECOM has prepared this document for the sole use of the Client and for a specific purpose, each as expressly stated in the document. No other party should rely on this document without the prior written consent of AECOM. AECOM undertakes no duty, nor accepts any responsibility, to any third party who may rely upon or use this document. This document has been prepared based on the Client's description of its requirements and AECOM's experience, having regard to assumptions that AECOM can reasonably be expected to make in accordance with sound professional principles. AECOM may also have relied upon information provided by the Client and other third parties to prepare this document, some of which may not have been verified. Subject to the above conditions, this document may be transmitted, reproduced or disseminated only in its entirety.

Quality Information

Document

Emissions Testing Report 2013-14

Ref

60305580

Date

05-May-2014

Prepared by Chris Burns

Approved Signatory

Reviewed by

Chad Whitburn

Approved Signatory

Revision History

Revision	Revision	Detaile	Authorised	
	Date	Details	Name/Position	Signature
	5-May-2014	Emissions Testing Report 2013-2014	Chad Whitburn Associate Director	

٨	^	$\hat{}$	R/	ı

Emissions Testing Report 2013-14 - National Ceramic Industries Australia Commercial-in-Confidence

This page has been left blank intentionally.

Table of Contents

1.0 2.0 3.0	Introduction Sampling Plane Requirements Methodology 3.1 NATA Accredited Methods	1 3 5 5
4.0 5.0 6.0	Sampling Location Equipment Calibration Results	7 9 11
Appendix	A Field Sheets and Final Calculations (190 pages)	Α
Appendix	B Laboratory Analytical Reports (30 pages)	В
Appendix	C Raw and Calculated Gas Data (12 pages)	С
List of Ta	ables	
Table 1 Table 2	Criteria for Selection of Sampling Planes (AS4323.1-1995) AECOM NATA Endorsed Methods	3 5
Table 3 Table 4 Table 5	Sampling Location Summary Summary Particulate Emission Monitoring Results, October and November 2013 Kiln 1 and Kiln 2 Emission Monitoring Results Summary, January & April 2014	7 11 11
Table 6 Table 7 Table 8	Kiln 1 and 2 Gaseous Data Results, January 2014 Clay Prep Stack Total Particulate and Fine Particulate (PM_{10}) Results, 30 October 2013 Pressing and Drying Stack Total Particulate and Fine Particulate (PM_{10}) Results, 30	12 13
Table 9	October 2013 Dryer 1 Stack Total Particulate and Fine Particulate (PM ₁₀) Results, 1 November 2013	14 15
Table 10 Table 11 Table 12	Dryer 2 Stack Total Particulate and Fine Particulate (PM ₁₀) Results, 1 November 2013 Glaze Line Stack Total Particulate and Fine Particulate (PM ₁₀) Results, 30 October 2013 Selection Line Stack Total Particulate and Fine Particulate (PM ₁₀) Results, 29 October	16 17
Table 13	2013 Spray Dryer Stack Total Particulate and Fine Particulate (PM_{10}) Results, 29 October	18
Table 14	2013 Hot Air Cooler Stack Total Particulate and Fine Particulate (PM ₁₀) Results, 28 October 2013	19 20
Table 15 Table 16	Hot Air Cooler 2 Stack Total Particulate and Fine Particulate (PM ₁₀) Results, 28 October 2013 Kiln 1 Stack Total Particulate, Fine Particulate (PM ₁₀) and Fluoride Results, 29 January	21
Table 17	2013 Kiln 1 Hazardous Substances (Metals), Sulfuric Acid Mist (H ₂ SO ₄ as SO ₃) and Sulfur	22
Table 18	Dioxide (SO ₂ as SO ₃) Results 30 January 2014 Kiln 2 Stack Total Particulate, Fine Particulate (PM ₁₀) and Total Fluoride 30 January 2014	2324
Table 19 Table 20	Kiln 2 Hazardous Substances (Metals) Results 31 January 2014 Kiln 2 Sulfuric Acid Mist (H_2SO_4 as SO_3) and Sulfur Dioxide (SO_2 as SO_3) Results, 3 April	25
Table 21 Table 22	2014 Kiln 1 Elemental Hazardous Substances (Metals) Results Kiln 2 Elemental Hazardous Substances (Metals) Results	26 27 28

28

٨	^	$\hat{}$	R/	ı

Emissions Testing Report 2013-14 - National Ceramic Industries Australia Commercial-in-Confidence

This page has been left blank intentionally.

1.0 Introduction

AECOM was appointed by National Ceramic Industries Australia Pty Limited (NCIA) to conduct annual air emission measurements at their facility located at Racecourse Road, Rutherford NSW. Emission testing was performed for the assessment of compliance with requirements of the facility's Environment Protection Licence (EPL 11956). Emission sources assessed during the testing period where EPL points 1 (Clay Prep), 2 (Pressing and Drying), 5 (Dryer 1), 6 (Dryer 2), 9 (Glaze Line), 10 (Selection Line), 12 (Spray Dryer), 14 (Kiln 1), 15 (Kiln 2) 18 (Hot Air Cooler 1) and 19 (Hot Air Cooler 2).

Assessment of the following emission parameters associated with each source was performed during October -November 2013 and January - April 2014:

- Velocity;
- Volumetric Flow rate;
- Moisture Content;
- Carbon Monoxide, Carbon Dioxide and Oxygen (for determination of Dry Gas Density);
- Total Particulate Matter; and
- Fine Particulate (PM₁₀).

Concentrations of the following air contaminants were also assessed on Kiln 1 & Kiln 2 stack emissions:

- Total Fluoride;
- Sulfur Dioxide (SO₂ as SO₃) and Sulfuric Acid Mist (H₂SO₄ as SO₃);
- Hazardous Substances; and
- Oxides of Nitrogen (NO, NO2, NOx and Equivalent NO2).

Laboratory analysis was conducted by the following laboratories, which hold NATA accreditation for the specified

- Steel River Testing Pty. Ltd., NATA accreditation number 18079, performed the following analysis detailed in report number 5399-0-P, 5399-0-M, 5930-0-P, 5930-0-M & 6326-0-M:
 - Total Particulate;
 - Fine Particulate (PM₁₀); and
 - Moisture
- Australian Laboratory Services (ALS), laboratory NATA accreditation number 825, performed the following analysis detailed in reports numbered EN1400365 & EN1401194:
 - Total Fluoride;
 - Sulfuric Acid Mist (H2SO4 as SO3); and
 - Sulfur Dioxide (SO₂ as SO₃).
- Leeder Consulting, NATA accreditation number 14429, performed the following analysis detailed in report numbers M140192:
 - Hazardous Substances (Metals).

Emissions Testing Report 2013-14 - National Ceramic Industries A	ustralia
Commercial-in-Confidence	

AECOM

This page has been left blank intentionally.

2.0 Sampling Plane Requirements

The criteria for sampling planes are specified in AS 4323.1-1995.

Table 1 Criteria for Selection of Sampling Planes (AS4323.1-1995)

Type of flow disturbance	Minimum distance upstream from disturbance, diameters (D)	Minimum distance downstream from disturbance, diameters (D)
Bend, connection, junction, direction change	>2D	>6D
Louvre, butterfly damper (partially closed or closed)	>3D	>6D
Axial fan	>3D	>8D (see Note)
Centrifugal fan	>3D	>6D

NOTE: The plane should be selected as far as practicable from a fan. Flow straighteners may be required to ensure the position chosen meets the check criteria listed in Items (a) to (f) below.

- a) The gas flow is basically in the same direction at all points along each sampling traverse;
- b) The gas velocity at all sampling points is greater than 3 m/s;
- The gas flow profile at the sampling plane shall be steady, evenly distributed and not have a cyclonic component which exceeds an angle of 15° to the duct axis, when measured near the periphery of a circular sampling plane;
- The temperature difference between adjacent points of the survey along each sampling traverse is less than 10% of the absolute temperature, and the temperature at any point differs by less than 10% from the mean;
- The ratio of the highest to lowest pitot pressure difference shall not exceed 9:1 and the ratio of highest to lowest gas velocities shall not exceed 3:1. For isokinetic testing with the use of impingers, the gas velocity ratio across the sampling plane should not exceed 1.6:1; and
- The gas temperature at the sampling plane should preferably be above the dewpoint.

The following stacks did not meet the above criteria in regards to distances from disturbances; as a result extra sampling points were added in accordance with AS 4323.1 – 1995 section 4.2:

- Kiln 1 & 2;
- Pressing and Drying;
- Glaze Line:
- Selection Line:
- Spray Dryer; and
- Hot Air Coolers 1 & 2.

All other points sampled comply with the above criteria.

Emissions Testing Report 2013-14 – National Ceramic Industries Australia	4
Emissions resting Report 2010 14 National Octamic modelines Australia	
Commercial-in-Confidence	

AECOM

This page has been left blank intentionally.

3.0 Methodology

3.1 NATA Accredited Methods

The following methods are within the scope of our National Association of Testing Authorities (NATA) accreditation. Accreditation Number 2778 (14391) and are approved for the sampling and analysis of gases. Specific details of the methods are available on request.

All sampling and analysis is conducted according to the methods in Table 2.

Table 2 AECOM NATA Endorsed Methods

NSW EPA Approved Methods	USEPA Methods	Method Title	
AS4323.1 (NSW EPA TM-1)	USEPA (2000) Method 1	Selection of sampling positions	
AS4323.2 (NSW EPA TM-15)	USEPA (2000) Method 5 under approved circumstances	Determination of total particulate matter – isokinetic manual sampling – gravimetric method	
NSW EPA TM-2	USEPA (2000) Method 2 or 2C or USEPA (1999) Method 2F or 2G or 2H (as appropriate)	Determination of stack gas velocity and volumetric flow rate (type s pitot tube)	
NSW EPA TM-3	USEPA (2000) Method 8 (for sampling and analysis only if interference from fluorides, free ammonia and/or dimethyl aniline has been demonstrated to the satisfaction of the chief Scientist, EPA) (as appropriate)	Determination of sulfuric acid mist emissions from stationary sources	
NSW EPA TM-4	USEPA (2000) Method 6 or 6A or 6B or USEPA (1996) Method 6C or ISO (1989) Method 7934 or ISO (1992) Method 7935 or ISO (1993) Method 10396 or ISO (1998) Method 11632 (as appropriate)	Determination of Sulfur Dioxide (SO ₂) emissions from stationary sources	
NSW EPA TM-9	USEPA (2000) Method 13A or 13B (as appropriate)	Determination of total fluoride emissions from stationary sources	
NSW EPA TM-11	USEPA (2000) Method 7 or 7A or 7B or 7C or 7D or USEPA (1990) Method 7E or USEPA (1996) Method 20 or ISO (1993) Method 10396 (as appropriate). NO _x analysers may be substituted in Method 7E provided the performance Specifications of the method are met. Both NO and NO _x must be directly measured.	Nitrogen dioxide (NO ₂) or nitric oxide (NO)	
NSW EPA TM-12	USEPA (2000) Method 29 or USEPA (2000) Method 102 (for mercury only in hydrogen rich streams) (as appropriate)	Type 1 substances (elements antimony (Sb), arsenic (As), cadmium (Cd), lead (Pb) or mercury (Hg) or any compound containing one or more of those elements)	

Table 2 Continued AECOM NATA Endorsed Methods

NSW EPA Approved Methods	USEPA Methods	Method Title
NSW EPA TM-13	USEPA (2000) Method 29 (Analysis for tin and vanadium to be done by Inductively Coupled Argon Plasma Emission Spectroscopy (ICAP) as defined in USEPA Method 29) or USEPA (1986) Method 7910 (for vanadium only) or USEPA (1986) Method 7911 (for vanadium only) (as appropriate)	Type 2 substances (elements beryllium (Be), chromium (Cr), cobalt (Co), manganese (Mn), nickel (Ni), selenium (Se), tin (Sn) or vanadium (V) or any compound containing one or more of those elements)
NSW EPA TM-14	USEPA (2000) Method 29	Cadmium (Cd) or mercury (Hg) or any compound containing one or more of those elements
NSW EPA TM-22 USEPA (2000) Method 4		Determination of moisture content in stack gases
NSW EPA TM-23	USEPA (2000) Method 3	Gas analysis for the determination of dry molecular weight
NSW EPA OM-5 USEPA (1997) Method 201 or 201A (as appropriate)		Determination of PM ₁₀ emissions

4.0 Sampling Location

Table 3 provides a summary of the locations sampled by AECOM at the National Ceramic Industries Australia Rutherford Site during October - November 2013 and January - April 2014.

Table 3 Sampling Location Summary

Discharge Description	Clay Preparation (CP1) (EPL 1)	Pressing and Drying (PD1) (EPL2)	Dryer (D1) (EPL5)	Dryer (D2) (EPL6)	Glaze Line (EPL9)
Duct Shape	Circular	Circular	Circular	Circular	Circular
Construction Material	Metal	Metal	Metal	Metal	Metal
Duct Dimensions (mm)	995	1000	490	490	1000
Minimum No. Sampling Points	12	12	8	8	12
Sampling Ports	2	2	2	2	2
Min. Points/Traverse	6	6	4	4	6
Disturbance	No	Yes	No	No	Yes
Distance from Upstream Disturbance ¹	6	4	10	8	4
Type of Disturbance	Junction	Junction	Fan	Fan	Junction
Distance from Downstream Disturbance ¹	15	15	8	20	15
Type of Disturbance	Stack Exit	Stack Exit	Stack Exit	Stack Exit	Stack Exit
Ideal Sampling Location	Yes	No	Yes	Yes	No
Correction Factors Applied	No	Yes	No	No	Yes
Total No. Points Sampled	12	16	8	8	16
Points/Traverse	6	8	4	4	8
Sampling Performed to Standard ²	Yes ³	Yes ⁴	Yes ³	Yes ³	Yes ⁴

Notes

¹ Expressed in equivalent stack diameters

 $^{^{2}\,}$ AS 4323.1 (1995) Stationary source emissions Method 1 - Selection of sampling positions

³ AS 4323.1 (1995) Section 4.1

⁴ AS 4323.1 (1995) Section 4.2

Emission Source Sampling Location Summary (continued)

		ı			ı	ı
Discharge Description	Selection Line (SL1,2,3,4) (EPL10)	Spray Dryer (SD1) (EPL12)	Kiln (KP1) (EPL14)⁵	Kiln (KP2) (EPL15)⁵	Hot Air Cooler (HAC1) (EPL18)	Hot Air Cooler (HAC2) (EPL19)
Duct Shape	Circular	Circular	Circular	Circular	Circular	Circular
Construction Material	Metal	Metal	Metal	Metal	Metal	Metal
Duct Dimensions (mm)	490	1385	980	980	1000	1200
Minimum No. Sampling Points	8	12	12	12	12	12
Sampling Ports	2	2	2	2	2	2
Min. Points/Traverse	4	6	6	6	6	6
Disturbance	Yes	Yes	Yes	Yes	Yes	Yes
Distance from Upstream Disturbance ¹	4	7	3	3	3	4
Type of Disturbance	Fan	Bend	Change in Diameter	Change in Diameter	Bend	Fan
Distance from Downstream Disturbance ¹	6	5	5	5	3	4
Type of Disturbance	Stack Exit	Stack Exit	Bend	Bend	Stack Exit	Stack Exit
Ideal Sampling Location	No	No	No	No	No	No
Correction Factors Applied	Yes	Yes	Yes	Yes	Yes	Yes
Total No. Points Sampled	12	16	16	16	16	16
Points/Traverse	6	8	8	8	8	8
Sampling Performed to Standard ²	Yes ⁴	Yes ⁴	Yes ⁴	Yes ⁴	Yes ⁴	Yes ⁴

Notes

¹ Expressed in equivalent stack diameters

² AS 4323.1 (1995) Stationary source emissions Method 1 – Selection of sampling positions

³ AS 4323.1 (1995) Section 4.1

⁴ AS 4323.1 (1995) Section 4.2

⁵ Sampling occurred prior to the baghouse as per client request

5.0 Equipment Calibration

AECOM has a calibration schedule to ensure the emission testing equipment is maintained in good order and with known calibration. Equipment used in this project was calibrated according to the procedures and frequency identified in the AECOM Calibration Schedule. Details of the schedule and the calibration calculations are available on request.

Emissions Testing Report 2013-14 - National Ceramic Industries Austra
Commercial-in-Confidence

AECOM

This page has been left blank intentionally.

6.0 Results

A summary of results obtained from stack emissions testing performed during October - November 2013 and January – April 2014, are provided in **Tables 4 - 6**.

Emission data particular to each emission source investigated is presented in **Tables 8 - 21**. Element Hazardous Substances (metals) results are presented in **Table 22** and **23**. All emission concentrations are converted to standard conditions of 0°C, dry gas and 1 atmosphere pressure for comparison with appropriate regulatory limits.

For comparison with EPL requirements Oxides of Nitrogen, Total Particulate and Fine Particulate (PM_{10}) emission concentrations determined within the Kiln stacks exhausts have been corrected to 18% O_2 based on the measured oxygen content within the sampling plane during the testing period.

AECOM has a calculated limit of uncertainty in regards to results. The estimation of measurement uncertainty in source testing is conducted to provide an indication of the precision of the measurement result and a degree of confidence in the range of values the reported result may represent. The measurement of uncertainty has been calculated at ±13.6%.

Field sheets and final calculations can be referred to in **Appendix A**. Raw and Calculated Oxides of Nitrogen data is attached in **Appendix B**. Analytical laboratory result certificates are provided in **Appendix C**.

Table 4 Summary Particulate Emission Monitoring Results, October and November 2013

Stack	Fine Particulate (PM ₁₀) (mg/m³)	Total Particulate (mg/m³)	Regulatory Limit (mg/m³)*
Clay Preparation (CP1) (EPL 1)	0.55	1.2	20
Pressing and Drying (PD1) (EPL 2)	2.8	12	20
Dryer (D1) (EPL 5)	0.97	2.3	20
Dryer (D2) (EPL 6)	0.9	2.2	20
Glaze Line (EPL 9)	<0.22	0.52	20
Selection Line (SL 1,2,3,4) (EPL 10)	0.69	1.1	20
Spray Dryer (SD1) (EPL 10)	6.3	13	20
Hot Air Cooler (HAC 1) (EPL 18)	0.35	0.6	5
Hot Air Cooler (HAC 2) (EPL 19)	0.25	0.5	5

^{*}Note:- Regulatory limit only applies to Total Particulate.

Table 5 Kiln 1 and Kiln 2 Emission Monitoring Results Summary, January & April 2014

Pollutant	Kiln 1 (EPL 14)	Kiln 2 (EPL 15)	Regulatory Limit
Fine Particulate (at 18% O ₂) (PM ₁₀) (mg/m ³)	2	13	N/A
Total Particulate (at 18% O ₂) (mg/m ³)	8	18	20
Total Fluoride (as HF) (mg/m³)	4.4	1.3	5
Sulfuric Acid Mist (H ₂ SO ₄ as SO ₃) (mg/m ³)	<2.1	29	100
Sulfur Dioxide (SO ₂ as SO ₃) (mg/m ³)	16	230	NA
Total Hazardous Substances (Metals) (mg/m³)	0.12	0.17	1
Cadmium (mg/m³)	0.017	0.026	0.1
Mercury (mg/m³)	<0.000022	0.0026	0.1

Table 6 Kiln 1 and 2 Gaseous Data Results, January 2014

Pollutant	Kiln 1 (EPL 14)	Kiln 2 (EPL 15)	Regulatory Limit
Date Sampled	29/01/2014	31/01/2014	-
Time Sampled	10:46:21 – 11:46:21	9:10:50 - 10:10:50	-
Stack Gas Flowrate (m³/s) (0°C, dry gas, 1atm pressure)	5.5	5.3	-
Total Oxides of Nitrogen (as Equivalent NO ₂) (mg/m ³) at 18% O ₂	75	88	100
Total Oxides of Nitrogen (as Equivalent NO ₂) (mg/s) at 18% O ₂	412.5	466.4	NA
Nitrogen Oxide (NO) (mg/m³) at 18% O ₂	8	7	NA
Nitrogen Oxide (NO) (mg/s) at 18% O ₂	44	37.1	NA
Nitrogen Dioxide (NO2) (mg/m³) at 18% O ₂	63	78	NA
Nitrogen Dioxide (NO2) (mg/s) at 18% O ₂	346.5	413.4	NA
Total Oxides of Nitrogen (NOx) (mg/m³) at 18% O ₂	70	84	NA
Total Oxides of Nitrogen (NOx) (mg/s) at 18% O ₂	385	445.2	NA
Oxygen (O ₂) %	16.15	15.60	NA

Table 7 Clay Prep Stack Total Particulate and Fine Particulate (PM₁₀) Results, 30 October 2013

Sampling Conditions:				
Stack internal diameter at test location	995	mm		
Stack gas temperature (average)	25.0	°C	298.2	K
Stack pressure (average)	1014	hPa		
Stack gas velocity (average, stack conditions)	14	m/s		
Stack gas flowrate (stack conditions)	11	m ³ /s		
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	9.7	m ³ /s		
Fine Particulate (PM ₁₀) Testing				
Test Period	10:40	-	11:45	
Fine Particulate (PM ₁₀) Mass	0.4	mg		
Gas Volume Sampled	0.728	m^3		
Fine Particulate (PM ₁₀) Emission* ¹	0.55	mg/m ³		
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	5.4	mg/s		
Regulatory Limit	N/A			
Total Particulate Testing				
Test Period	10:40	-	11:43	
Total Particulate Mass	0.8	mg		
Gas Volume Sampled	0.652	m^3		
Total Particulate Emission*1	1.2	mg/m ³		
Total Particulate Mass Emission Rate*2	12	mg/s		
Regulatory Limit	20	mg/m³		
Moisture Content (%)	1.9			
Gas Density (dry at 1 atmosphere)	1.29	kg/m³		
Dry Molecular Weight	28.8	g/g-mole		

^{*2} Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Table 8 Pressing and Drying Stack Total Particulate and Fine Particulate (PM₁₀) Results, 30 October 2013

Sampling Conditions:				
Stack internal diameter at test location	1000	mm		
Stack gas temperature (average)	37.5	°C	310.7	K
Stack pressure (average)	1013	hPa		
Stack gas velocity (average, stack conditions)	13	m/s		
Stack gas flowrate (stack conditions)	10	m ³ /s		
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	8.8	m³/s		
Fine Particulate (PM ₁₀) Testing				
Test Period	10:08	-	11:30	
Fine Particulate (PM ₁₀) Mass	2.7	mg		
Gas Volume Sampled	0.964	m^3		
Fine Particulate (PM ₁₀) Emission* ¹	2.8	mg/m ³		
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	25	mg/s		
Regulatory Limit	N/A			
Total Particulate Testing				
Test Period	10:08	-	11:30	
Total Particulate Mass	8.5	mg		
Gas Volume Sampled	0.71	m^3		
Total Particulate Emission*1	12	mg/m ³		
Total Particulate Mass Emission Rate*2	100	mg/s		
Regulatory Limit	20	mg/m ³		
Moisture Content (%)	1.7			
Gas Density (dry at 1 atmosphere)	1.29	kg/m³		
Dry Molecular Weight	28.8	g/g-mole		

 $^{^*2}$ Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Table 9 Dryer 1 Stack Total Particulate and Fine Particulate (PM₁₀) Results, 1 November 2013

Sampling Conditions:				
Stack internal diameter at test location	490	mm		
Stack gas temperature (average)	102.3	°C	375.5	K
Stack pressure (average)	1018	hPa		
Stack gas velocity (average, stack conditions)	9.6	m/s		
Stack gas flowrate (stack conditions)	1.8	m ³ /s		
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	1.3	m³/s		
Fine Particulate (PM ₁₀) Testing				
Test Period	9:52	-	10:32	
Fine Particulate (PM ₁₀) Mass	0.4	mg		
Gas Volume Sampled	0.413	m^3		
Fine Particulate (PM ₁₀) Emission* ¹	0.97	mg/m ³		
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	1.2	mg/s		
Regulatory Limit	N/A			
Total Particulate Testing				
Test Period	9:52	-	10:32	
Total Particulate Mass	1	mg		
Gas Volume Sampled	0.437	m^3		
Total Particulate Emission*1	2.3	mg/m ³		
Total Particulate Mass Emission Rate*2	2.9	mg/s		
Regulatory Limit	20	mg/m ³		
Moisture Content (%)	3.9			
Gas Density (dry at 1 atmosphere)	1.29	kg/m³		
Dry Molecular Weight	28.9	g/g-mole		

^{*2} Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Dryer 2 Stack Total Particulate and Fine Particulate (PM₁₀) Results, 1 November 2013 Table 10

Sampling Conditions:				
Stack internal diameter at test location	490	mm		
Stack gas temperature (average)	105.8	°C	379.0	K
Stack pressure (average)	1011	hPa		
Stack gas velocity (average, stack conditions)	12	m/s		
Stack gas flowrate (stack conditions)	2.2	m ³ /s		
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	1.5	m ³ /s		
Fine Particulate (PM ₁₀) Testing				
Test Period	11:42	-	12:24	
Fine Particulate (PM ₁₀) Mass	0.4	mg		
Gas Volume Sampled	0.444	m^3		
Fine Particulate (PM ₁₀) Emission* ¹	0.9	mg/m ³		
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	1.4	mg/s		
Regulatory Limit	NA			
Total Particulate Testing				
Test Period	11:42	-	12:24	
Total Particulate Mass	1.1	mg		
Gas Volume Sampled	0.511	m^3		
Total Particulate Emission*1	2.2	mg/m ³		
Total Particulate Mass Emission Rate*2	3.3	mg/s		
Regulatory Limit	20	mg/m³		
Moisture Content (%)	5.1			
Gas Density (dry at 1 atmosphere)	1.29	kg/m³		
Dry Molecular Weight	28.8	g/g-mole		

^{*2} Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final calculations" for each test.

Glaze Line Stack Total Particulate and Fine Particulate (PM₁₀) Results, 30 October 2013 Table 11

Sampling Conditions:				
Stack internal diameter at test location	1000	mm		
Stack gas temperature (average)	29.9	°C	303.1	K
Stack pressure (average)	1014	hPa		
Stack gas velocity (average, stack conditions)	14	m/s		
Stack gas flowrate (stack conditions)	11	m ³ /s		
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	9.7	m ³ /s		
Fine Particulate (PM ₁₀) Testing				
Test Period	11:37	-	13:00	
Fine Particulate (PM ₁₀) Mass	<0.2	mg		
Gas Volume Sampled	0.915	m^3		
Fine Particulate (PM ₁₀) Emission* ¹	<0.22	mg/m ³		
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	<2.2	mg/s		
Regulatory Limit	N/A			
Total Particulate Testing				
Test Period	11:37	-	13:00	
Total Particulate Mass	0.4	mg		
Gas Volume Sampled	0.765	m^3		
Total Particulate Emission*1	0.52	mg/m ³		
Total Particulate Mass Emission Rate*2	5	mg/s		
Regulatory Limit	20	mg/m³		
Moisture Content (%)	1.2			
Gas Density (dry at 1 atmosphere)	1.29	kg/m³		
Dry Molecular Weight	28.8	g/g-mole		

^{*2} Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Selection Line Stack Total Particulate and Fine Particulate (PM_{10}) Results, 29 October 2013 Table 12

Sampling Conditions:				
Stack internal diameter at test location	490	mm		
Stack gas temperature (average)	39.5	°C	312.7	K
Stack pressure (average)	1000	hPa		
Stack gas velocity (average, stack conditions)	4.3	m/s		
Stack gas flowrate (stack conditions)	0.8	m ³ /s		
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	0.67	m³/s		
Fine Particulate (PM ₁₀) Testing				
Test Period	13:15	-	14:16	
Fine Particulate (PM ₁₀) Mass	0.5	mg		
Gas Volume Sampled	0.728	m^3		
Fine Particulate (PM ₁₀) Emission* ¹	0.69	mg/m³		
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	0.47	mg/s		
Regulatory Limit	N/A			
Total Particulate Testing				
Test Period	13:15	-	14:16	
Total Particulate Mass	0.6	mg		
Gas Volume Sampled	0.56	m^3		
Total Particulate Emission*1	1.1	mg/m³		
Total Particulate Mass Emission Rate*2	0.73	mg/s		
Regulatory Limit	20	mg/m³		
Moisture Content (%)	4.0			
Gas Density (dry at 1 atmosphere)	1.29	kg/m³		
Dry Molecular Weight	28.8	g/g-mole		

^{*2} Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Table 13 Spray Dryer Stack Total Particulate and Fine Particulate (PM₁₀) Results, 29 October 2013

Sampling Conditions:				
Stack internal diameter at test location	1385	mm		
Stack gas temperature (average)	89.1	°C	362.3	K
Stack pressure (average)	1000	hPa		
Stack gas velocity (average, stack conditions)	20	m/s		
Stack gas flowrate (stack conditions)	31	m ³ /s		
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	21	m ³ /s		
Fine Particulate (PM ₁₀) Testing				
Test Period	10:43	-	12:03	
Fine Particulate (PM ₁₀) Mass	4.3	mg		
Gas Volume Sampled	0.685	m^3		
Fine Particulate (PM ₁₀) Emission* ¹	6.3	mg/m³		
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	130	mg/s		
Regulatory Limit	N/A			
Total Particulate Testing				
Test Period	10:43	-	12:03	
Total Particulate Mass	8.3	mg		
Gas Volume Sampled	0.663	m^3		
Total Particulate Emission*1	13	mg/m ³		
Total Particulate Mass Emission Rate*2	260	mg/s		
Regulatory Limit	20	mg/m³		
Moisture Content (%)	9.9			
Gas Density (dry at 1 atmosphere)	1.29	kg/m³		
Dry Molecular Weight	28.9	g/g-mole		

 $^{^*2}$ Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Hot Air Cooler Stack Total Particulate and Fine Particulate (PM_{10}) Results, 28 October 2013 Table 14

Sampling Conditions:				
Stack internal diameter at test location	1000	mm		
Stack gas temperature (average)	87.7	°C	360.9	K
Stack pressure (average)	1011	hPa		
Stack gas velocity (average, stack conditions)	24	m/s		
Stack gas flowrate (stack conditions)	19	m ³ /s		
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	14	m³/s		
Fine Particulate (PM ₁₀) Testing				
Test Period	11:25	-	12:46	
Fine Particulate (PM ₁₀) Mass	0.4	mg		
Gas Volume Sampled	1.14	m^3		
Fine Particulate (PM ₁₀) Emission* ¹	0.35	mg/m ³		
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	4.9	mg/s		
Regulatory Limit	N/A			
Total Particulate Testing				
Test Period	11:25	-	12:46	
Total Particulate Mass	0.7	mg		
Gas Volume Sampled	1.16	m^3		
Total Particulate Emission*1	0.6	mg/m ³		
Total Particulate Mass Emission Rate*2	8.3	mg/s		
Regulatory Limit	5	mg/m³		
Moisture Content (%)	1.6			
Gas Density (dry at 1 atmosphere)	1.29	kg/m³		
Dry Molecular Weight	28.8	g/g-mole		

^{*2} Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Hot Air Cooler 2 Stack Total Particulate and Fine Particulate (PM₁₀) Results, 28 October 2013 Table 15

Sampling Conditions:				
Stack internal diameter at test location	1200	mm		
Stack gas temperature (average)	90.0	°C	363.2	K
Stack pressure (average)	1012	hPa		
Stack gas velocity (average, stack conditions)	19	m/s		
Stack gas flowrate (stack conditions)	21	m ³ /s		
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	16	m ³ /s		
Fine Particulate (PM ₁₀) Testing				
Test Period	13:00	-	14:22	
Fine Particulate (PM ₁₀) Mass	0.3	mg		
Gas Volume Sampled	1.22	m^3		
Fine Particulate (PM ₁₀) Emission* ¹	0.25	mg/m ³		
Fine Particulate (PM ₁₀) Mass Emission Rate* ²	4	mg/s		
Regulatory Limit	N/A			
Total Particulate Testing				
Test Period	13:00	-	14:22	
Total Particulate Mass	0.4	mg		
Gas Volume Sampled	0.807	m^3		
Total Particulate Emission*1	0.5	mg/m ³		
Total Particulate Mass Emission Rate*2	7.8	mg/s		
Regulatory Limit	5	mg/m ³		
Moisture Content (%)	1.3			
Gas Density (dry at 1 atmosphere)	1.29	kg/m³		
Dry Molecular Weight	28.8	g/g-mole		

^{*2} Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Kiln 1 Stack Total Particulate, Fine Particulate (PM_{10}) and Fluoride Results, 29 January 2013 Table 16

Sampling Conditions:			
Stack internal diameter at test location	980	mm	
Stack gas temperature (average)	229.6	°C	502.8 K
Stack pressure (average)	1011	hPa	
Stack gas velocity (average, stack conditions)	15	m/s	
Stack gas flowrate (stack conditions)	11	m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	5.8	m ³ /s	
Fine Particulate (PM10) Testing			
Test Period	10:15	-	11:36
Fine Particulate (PM ₁₀) Mass	3.2	mg	
Gas Volume Sampled	0.967	m^3	
Fine Particulate (PM ₁₀) Emission* ¹ at 18% O ₂	2	mg/m ³	
Fine Particulate (PM ₁₀) Mass Emission Rate* ² at 18% O ₂	12	mg/s	
Regulatory Limit at 18% O ₂	N/A		
Total Particulate Testing			
Test Period	10:15	-	11:36
Total Particulate Mass	13.7	mg	
Gas Volume Sampled	1.1	m^3	
Total Particulate Emission*1 at 18% O ₂	8	mg/m ³	
Total Particulate Mass Emission Rate*2 at 18% O2	47	mg/s	
Regulatory Limit at 18% O ₂	20	mg/m³	
Total Fluoride Testing			
Test Period	10:15	-	11:36
Total Fluoride Mass	3.55	mg	
Gas Volume Sampled	0.801	m^3	
Total Fluoride Emission*1	4.4	mg/m³	
Total Fluoride Mass Emission Rate*2	26	mg/s	
Regulatory Limit	5	mg/m³	
Moisture Content (%)	3.3		
Gas Density (dry at 1 atmosphere)	1.30	kg/m³	
Dry Molecular Weight	29.1	g/g-mole	

^{*2} Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

 $Kiln\ 1\ Hazardous\ Substances\ (Metals),\ Sulfuric\ Acid\ Mist\ (H_2SO_4\ as\ SO_3)\ and\ Sulfur\ Dioxide\ (SO_2\ as\ SO_3)\ Results$ Table 17 30 January 2014

Sampling Conditions:			
Stack internal diameter at test location	980	mm	
Stack gas temperature (average)	272.7	°C	545.9 K
Stack pressure (average)	1014	hPa	
Stack gas velocity (average, stack conditions)	14	m/s	
Stack gas flowrate (stack conditions)	11	m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	5.2	m ³ /s	
Hazardous Substances (Metals) Testing			
Test Period	8:30	-	10:08
Hazardous Substances (Metals) Mass	0.14	mg	
Gas Volume Sampled	1.15	m^3	
Hazardous Substances (Metals) Emission*1	0.12	mg/m ³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.62	mg/s	
Regulatory Limit	1	mg/m ³	
Sulfuric Acid Mist (H2SO4 as SO3) Testing			
Test Period	8:30	-	10:08
Sulfuric Acid Mist (H ₂ SO ₄ as SO ₃) Mass	<2	mg	
Gas Volume Sampled	0.951	m^3	
Sulfuric Acid Mist (H ₂ SO ₄ as SO ₃) Emission* ¹	<2.1	mg/m ³	
Sulfuric Acid Mist (H ₂ SO ₄ as SO ₃) Mass Emission Rate* ²	<11	mg/s	
Regulatory Limit	100	mg/m ³	
Sulfur Dioxide (SO2 as SO3) Testing			
Test Period	8:30	-	10:08
Sulfur Dioxide (SO ₂ as SO ₃) Mass	15	mg	
Gas Volume Sampled	0.951	m^3	
Sulfur Dioxide (SO ₂ as SO ₃) Emission* ¹	16	mg/m³	
Sulfur Dioxide (SO ₂ as SO ₃) Mass Emission Rate* ²	84	mg/s	
Regulatory Limit	N/A		
Moisture Content (%)	4.6		
Gas Density (dry at 1 atmosphere)	1.30	kg/m³	
Dry Molecular Weight	29	g/g-mole	

^{*2} Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Table 18 Kiln 2 Stack Total Particulate, Fine Particulate (PM₁₀) and Total Fluoride 30 January 2014

Sampling Conditions:			
Stack internal diameter at test location	980	mm	
Stack gas temperature (average)	196.4	°C	469.6 K
Stack pressure (average)	1013	hPa	
Stack gas velocity (average, stack conditions)	13	m/s	
Stack gas flowrate (stack conditions)	9.8	m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	5.4	m ³ /s	
Fine Particulate (PM10) Testing			
Test Period	10:16	-	11:36
Fine Particulate (PM ₁₀) Mass	8.7	mg	
Gas Volume Sampled	0.949	m^3	
Fine Particulate (PM ₁₀) Emission* ¹ at 18% O ₂	13	mg/m³	
Fine Particulate (PM ₁₀) Mass Emission Rate* ² at 18% O ₂	67	mg/s	
Regulatory Limit at 18% O ₂	N/A	mg/m³	
Total Particulate Testing			
Test Period	10:16	-	11:36
Total Particulate Mass	13.1	mg	
Gas Volume Sampled	0.971	m^3	
Total Particulate Emission* ¹ at 18% O ₂	18	mg/m ³	
Total Particulate Mass Emission Rate*2 at 18% O ₂	94	mg/s	
Regulatory Limit at 18% O ₂	20	mg/m³	
Total Fluoride Testing			
Test Period	10:16	-	11:36
Total Fluoride Mass	0.55	mg	
Gas Volume Sampled	0.416	m^3	
Total Fluoride Emission*1	1.3	mg/m³	
Total Fluoride Mass Emission Rate*2	7.1	mg/s	
Regulatory Limit	5	mg/m³	
Moisture Content (%)	5.1		
Gas Density (dry at 1 atmosphere)	1.29	kg/m ³	
Dry Molecular Weight	28.9	g/g-mole	

 $^{^*2}$ Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Kiln 2 Hazardous Substances (Metals) Results 31 January 2014 Table 19

Sampling Conditions:				
Stack internal diameter at test location	980	mm		
Stack gas temperature (average)	179.5	°C	452.7	K
Stack pressure (average)	1014	hPa		
Stack gas velocity (average, stack conditions)	12	m/s		
Stack gas flowrate (stack conditions)	9.2	m ³ /s		
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	5.2	m ³ /s		
Hazardous Substances (Metals) Testing				
Test Period	8:47	-	10:17	
Hazardous Substances (Metals) Mass	0.2	mg		
Gas Volume Sampled	1.16	m^3		
Hazardous Substances (Metals) Emission*1	0.17	mg/m ³		
Hazardous Substances (Metals) Mass Emission Rate*2	0.87	mg/s		
Regulatory Limit	1	mg/m³		
Moisture Content (%)	7.8			
Gas Density (dry at 1 atmosphere)	1.30	kg/m³		
Dry Molecular Weight	29.1	g/g-mole		

^{*2} Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

 $Kiln\ 2\ Sulfuric\ Acid\ Mist\ (H_2SO_4\ as\ SO_3)\ and\ Sulfur\ Dioxide\ (SO_2\ as\ SO_3)\ Results,\ 3\ April\ 2014$ Table 20

Sampling Conditions:			
Stack internal diameter at test location	980	mm	
Stack gas temperature (average)	249.3	°C	522.5 K
Stack pressure (average)	1012	hPa	
Stack gas velocity (average, stack conditions)	13	m/s	
Stack gas flowrate (stack conditions)	10	m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	4.8	m ³ /s	
Sulfuric Acid Mist (H2SO4 as SO3) Testing			
Test Period	11:08	-	12:35
Sulfuric Acid Mist (H ₂ SO ₄ as SO ₃) Mass	26	mg	
Gas Volume Sampled	0.907	m^3	
Sulfuric Acid Mist (H ₂ SO ₄ as SO ₃) Emission* ¹	29	mg/m ³	
Sulfuric Acid Mist (H ₂ SO ₄ as SO ₃) Mass Emission Rate* ²	140	mg/s	
Regulatory Limit	100	mg/m³	
Sulfur Dioxide (SO2 as SO3) Testing			
Test Period	11:08	-	12:35
Sulfur Dioxide (SO ₂ as SO ₃) Mass	210	mg	
Gas Volume Sampled	0.907	m^3	
Sulfur Dioxide (SO ₂ as SO ₃) Emission* ¹	230	mg/m ³	
Sulfur Dioxide (SO ₂ as SO ₃) Mass Emission Rate* ²	1100	mg/s	
Regulatory Limit	N/A		
Moisture Content (%)	9.1		
Gas Density (dry at 1 atmosphere)	1.30	kg/m³	
Dry Molecular Weight	29.1	g/g-mole	

^{*2} Mass emission rate determined from pre and post-test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Kiln 1 Elemental Hazardous Substances (Metals) Results Table 21

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	0.00015	0.00013	0.0023	0.002			0.002	0.0017	0.0088
Arsenic	0.0038	0.0033	0.00085	0.00074			0.005	0.0043	0.022
Beryllium	<0.0001	<0.000087	<0.0001	<0.000087			<0.000015	<0.000013	<0.000067
Cadmium	0.014	0.012	0.0097	0.0084			0.02	0.017	0.088
Chromium	0.019	0.017	0.00035	0.0003			0.02	0.017	0.088
Cobalt	<0.0001	<0.000087	<0.0001	<0.000087			<0.00015	<0.00013	<0.00067
Copper	0.015	0.013	<0.0006	<0.00052			0.015	0.013	0.067
Lead	0.045	0.039	0.00035	0.0003			0.05	0.043	0.22
Magnesium	0.055	0.048	0.00053	0.00046			0.06	0.052	0.27
Manganese	0.007	0.0061	<0.0071	<0.0062			0.007	0.0061	0.031
Mercury	<0.0001	<0.000087	<0.0001	<0.000087	<0.0005	<0.00043	<0.000025	<0.000022	<0.00011
Nickel	0.0018	0.0016	0.00035	0.0003			0.002	0.0017	0.0088
Selenium	0.0012	0.001	0.015	0.013			0.02	0.017	0.088
Thallium	0.0024	0.0021	<0.0001	<0.000087			0.0024	0.0021	0.011
Tin	0.0062	0.0054	0.0022	0.0019			0.008	0.007	0.036
Vanadium	0.0004	0.00035	<0.0001	<0.000087			0.0004	0.00035	0.0018
Zinc	1.4	1.2	0.0027	0.0023			1	0.87	4.5
Total Hazardous Metals*	0.095	0.083	0.029	0.025	<0.0005	<0.00043	0.14	0.12	0.61
Total Metals	1.6	1.3	0.034	0.03			1.2	1.1	5.4

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

http://vpo.au.aecomnet.com/projects/21134_NSWB1320961/6DraftDocs/6.1 Reports/1.9 Stack Testing 2013/NCIA Emissions Testing Report 2013_2014.docx Revision 1.0 – 05-May-2014 Prepared for – National Ceramic Industries Australia – ABN: 83100467267

Table 22 Kiln 2 Elemental Hazardous Substances (Metals) Results

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	0.00045	0.00039	0.00054	0.00047			0.001	0.00086	0.0044
Arsenic	0.014	0.012	0.0014	0.0012			0.02	0.017	0.087
Beryllium	<0.0001	<0.000086	<0.0001	<0.000086			<0.000015	<0.000013	<0.000067
Cadmium	0.021	0.018	0.006	0.0052			0.03	0.026	0.13
Chromium	0.022	0.019	0.0048	0.0041			0.03	0.026	0.13
Cobalt	<0.0001	<0.000086	<0.0001	<0.000086			<0.00015	<0.00013	<0.00067
Copper	0.0034	0.0029	0.00014	0.00012			0.004	0.0034	0.017
Lead	0.06	0.052	0.016	0.014			0.08	0.069	0.35
Magnesium	0.068	0.059	0.0023	0.002			0.07	0.06	0.31
Manganese	0.0094	0.0081	<0.0071	<0.0061			0.0094	0.0081	0.041
Mercury	0.00095	0.00082	0.0022	0.0019	0.0047	0.004	0.003	0.0026	0.013
Nickel	0.0024	0.0021	<0.0001	<0.000086			0.0024	0.0021	0.011
Selenium	0.0083	0.0071	0.0023	0.002			0.01	0.0086	0.044
Thallium	0.004	0.0034	0.0016	0.0014			0.006	0.0052	0.027
Tin	0.0065	0.0056	0.00055	0.00047			0.007	0.006	0.031
Vanadium	0.0004	0.00034	<0.0001	<0.000086			0.0004	0.00034	0.0017
Zinc	1.7	1.5	0.27	0.23			2	1.7	8.7
Total Hazardous Metals*	0.14	0.12	0.035	0.03	0.0047	0.004	0.2	0.17	0.88
Total Metals	1.9	1.7	0.31	0.26			2.3	2	10

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

Appendix A

Field Sheets and Final Calculations (190 pages)

Appendix A Field Sheets and Final Calculations (190 pages)

AECOM

NCIA

AECOM's Project Number:

60305580

Emission Source:

Clay Prep

Date Sampled:

30-Oct-13

ANALYTE(S)

METHOD

Fine Particulate (PM10)

NSW EPA OM - 5

Total Particulate

NSW EPA TM - 15

Observations made during testing period:

Sampling Performed By:

James Lang

STACK ANALYSIS - PRE-SAMPLING

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description: Clay Prep
Test 1: Fine Particulate (PM10)
Test 2: Total Particulate

	<u> </u>	Measurement/Obse	nyations	
Stack Inter	rnal Dimensions:	I VALIUIIS		
Diameter		mm	Cross Sectional Area	0.78m^2
OR	Length	Width		
Length/Wid			Minimum No. of	40
Equivalent	Diameter N/A	mm	sampling points=	12
 Distance fr	rom sampling plane to		Total No. of sampling	points = 12
nearest dis			l total rio. or camping	PM2.5/10= 12
			No. of sampling traver	rses/ports
Upstream (sampled =	2
No. Diame				PM2.5/10= 2
	ostream Disturbance:	Fan	No. of sampling point	
Downstrea No. Diame	, ,		traverse/port =	6
	eters = 15.1 own Stream Disturbance:	Stook Evit		PM2.5/10= 6
Type of Do	own Stream Disturbance.	Stack Exit	Exclusion of any sam	ala noint
Position of	each sampling point, for	each traverse:	numbers - comments:	•
	oddir ddiripinig politi, tor	odon navoroc.	Comments	
	A	В	PM10/2.5 A	PM2.5/10 B
No.	Distance from wall	S-type Pitot distances		S-Type Pitot distances
1	44	14	44	14
2 3	145 295	115 265	145 295	115 265
4	700	670	700	670
5	850	820	850	820
6	951	921	951	921
7				
8				
9				
10			Check of total points	
11 12			minimum, (yes/no) - c	omments:
13				
14				
15		· .		
16				
17				
18				
19			General Comments:	
20	^ -	<u> </u>	N	
Signed: <u></u>	AT		Charled	
oignea. 🚣	September 1		Checked:	
			I	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Clay Prep

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Sampling time start:	10:20	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	10:20	0	20.9	0.0
2	10:21	0	20.9	0.0
3	10:22	0	20.9	0.0
4	10:23	0	20.9	0.0
5	10:24	0	20.9	0.0
6	10:25	0	20.9	0.0
7	10:26	0	20.9	0.0
8	10:27	0	20.9	0.0
	Averages:	0.0 ppm	20.9 %	0.0 %

Moisture content (M3):

0.99 1.20 %

Moisture percentage (M2):

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O_2 :	20.9 %,(dry)	
Gas Com	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	78.2 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.6 %,(wet)	
H ₂ O:	1.20 %(=M2)			
Therefore	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Clay Prep

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Sampling time start:	12:10	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	12:10	0	20.9	0.0
2	12:11	0	20.9	0.0
3	12:12	0	20.9	0.0
4	12:13	0	20.9	0.0
5	12:14	0	20.9	0.0
6	12:15	0	20.9	0.0
7	12:16	0	20.9	0.0
8	12:17	0	20.9	0.0
	Averages:	0.0 ppm	20.9 %	0.0 %

Moisture content (M3):

0.98

Moisture percentage (M2):

1.58 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)
Gas Comp	positions converted to wet basis:		
CO:	0.0000 %,(wet)	N ₂ :	77.8 %,(wet)
CO ₂ :	0.0 %,(wet)	O ₂ :	20.6 %,(wet)
H ₂ O:	1.58 %(=M2)		
Therefore,	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)
		• • • • • • • • • • • • • • • • • • • •	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Clay Prep

Stack/Duct Description:

Test 1:Fine Particulate (PM10) Test 2:Total Particulate

Time:	10:20	Barometric P	ressure :	1014	hPa
Page No. :	1 of 1	Pitot Correction Factor :		0.84	
Sampling Port No:	1 to 2	Stack Gas Density:		1.28	kg/m ³
Pitot Tube Type :	s		•		(0 °C, Wet, 1 Atm)
Sampling Position No.	Distance from far wall (mm)	Max. Differential Pressure ΔP, kilo Pascals	Max Temp. °C	Max Temp. (Ts) K	•
1/1	14	0.147	25.0	298.2	13.3
1/2	115	0.167	25.0	298.2	14.1
1/3	265	0.167	25.0	298.2	14.1
1/4	670	0.152	25.0	298.2	13.5
1/5	820	0.162	25.0	298.2	13.9
1/6	921	0.147	25.0	298.2	13.3
2/1	14	0.172	24.0	297.2	14.3
2/2	115	0.177	25.0	298.2	14.6
2/3	265	0.167	25.0	298.2	14.1
2/4	670	0.152	25.0	298.2	13.5
2/5	820	0.147	24.0	297.2	13.3
2/6	921	0.118	24.0	297.2	11.9
Average			24.8	298.0	13.7

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa 4 mm 1014.39 hPa

A=COM

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date:

30-Oct-13

Client:

NCIA

60305580

AECOM's Project No: Stack Description No.: Sample Nozzle No.:

Clay Prep

fine3

Sample Nozzle Area (An): Thimble No:

2.05

T131

Sampling Port No.: Page No:

1 to 2 1 of 1

Blank thimble No:

N/A

Leak Check (Post Sampling)
Meter start: 99.7390 Meter finish:
Time start: 11:47 Time finish:

no leak

Leak Check (Pre-Sampling) Meter start: Time start:

98.9198 Meter finish: 10:37 Time finish:

98.9198 Meter start: 10:38 Time start:

99.7390 11:48

L/min

x 10⁻⁵m²

Therefore, leakage rate = no leak (>0.1 l/min. is unacceptable)

Therefore, leakage rate =

(>0.1 l/min. is unacceptable)

Repeat:

Comments:

Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1014 hPa (start);

L/min

1014 hPa (finish)

Meter start:

98.9206

Time start:

10:40

Meter correction factor (GMf):

1.0129

					T: -		
	Stopwatch	D				1mpinger	Flowrate
	Time at	Distance	Isokinetic	Meter Inlet	Meter Outlet	Train Outlet	Attained
Sampling	Sampling	from far wall	Flowrate				(Y/N)
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	Yes
1/1	0:04:45	44	13.6	38.0	30.0		
1/2	0:05:15	145	13.6	39.0	32.0		Yes Yes
1/3	0:05:15	295	13.6	41.0	32.0		Yes
1/4	0:05:00	700	13.6	41.0	33.0		
1/5	0:05:00	850	13.6	43.0	34.0		Yes
1/6	0:04:45	951	13.6	44.0	34.0		Yes
_							37
2/1	0:05:15	44	13.6	39.0	33.0		Yes
2/2	0:05:15	145	13.6	42.0	33.0		Yes
2/3	0:05:15	295	13.6	43.0	34.0		Yes
2/4	0:05:00	700	13.6	45.0	34.0		Yes
2/5	0:04:45	850	13.6	49.0	34.0		Yes
2/6	0:04:30	951	13.6	49.0	35.0		Yes
	 -						
		1					
_						<u> </u>	
	-		i -				
		<u> </u>					
		1			T-		
			_				
-		 			T	1	
		 	-	i	1		
			-				1
		+	-	-	 		
Averages				42.8	33.2	no result	
Averages Meter Finish	l	99.7384	<u> </u>	Time Finish:	33.2	11:45	

0 ml

Silica gel No(s) used:

Z18

Total Condensate collected:

A=COM

STACK ANALYSIS

SAMPLING OF TOTAL PARTICULATE

Date: 30-Oct-13

Client: NCIA

AECOM's Project No: 60305580

Stack Description No.: Clay Prep

Sample Nozzle No.: s9 Sample Nozzle Area (An): 1.41 x 10⁻⁵m²
Sampling Port No.: 1 to 2 Thimble No: T132

Sampling Port No.: 1 to 2 Thimble No: T132
Page No: 1 of 1 Blank thimble No: N/A

Leak Check (Pre-Sampling) Leak Check (Post Sampling)

 Meter start:
 64.3390 Meter finish:
 64.3390 Meter start:
 65.0502 Meter finish:
 65.0502 Meter finish:

 Time start:
 10:38 Time finish:
 10:39 Time start:
 11:49 Time finish:
 11:50

Therefore, leakage rate = no leak L/min Therefore, leakage rate = no leak L/min

(>0.1 l/min. is unacceptable) (>0.1 l/min. is unacceptable)

Repeat: Repeat: Comments: Comments:

Sampling Record Table

Barometric Pressure: 1014 hPa (start); 1014 hPa (finish)

Meter start: 64.3396 Time start: 10:40

Meter correction factor (GMf): 1.0159

Sampling	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:05:00	44	11.4	34.0	26.0		Yes
1/2	0:10:00	145	12.1	33.0	26.0		Yes
1/3	0:15:00	295	12.1	33.0	26.0		Yes
1/4	0:20:00	700	11.6	33.0	26.0		Yes
1/5	0:25:00	850	11.9	34.0	25.0		Yes
1/6	0:30:00	951	11.4	34.0	25.0		Yes
2/1	0:35:00	44	12.3	35.0	26.0		Yes
2/2	0:40:00	145	12.5	34.0	26.0		Yes
2/3	0:45:00	295	12.1	34.0	25.0		Yes
2/4	0:50:00	700	11.6	34.0	25.0		Yes
2/5	0:55:00	850	11.4	33.0	24.0		Yes
2/6	1:00:00	951	10.2	31.0	24.0		Yes
	-						. –
					 		
_							
	-	<u> </u>					
					ļ. <u> </u>		
					-	-	
					_	-	
				 		 	
						1	
		-			 		
Averages				33.5	25.3	no result	

Meter Finish: 65.0494 Time Finish:
Total Condensate collected: 0 ml Silica gel No(s) used: Z12

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Clay Prep

Test 1:Fine Particulate (PM10)

Test 2:Total Particulate

	44.55	D D		1011	hPa
Time :	11:55	Barometric P		1014	nra
Page No. :	1 of 1	Pitot Correcti		0.84	3
Sampling Port No:	1 to 2	Stack Gas D	ensity:	1.28	kg/m ³
Pitot Tube Type:	S				(0 °C, Wet, 1 Atm)
		Max.			
	Distance	Differential		Mau Tamp (Ta)	Corrected Velocity
Sampling Position	from far wall	Pressure	Max Temp. °C	Max Temp. (Ts) K	(Vs) m/s
No.	(mm)	ΔP, kilo	,	_ ^	((()))))
	, ,	Pascals			
1/1	14	0.157	25.0	298.2	13.7
1/2	115	0.167	25.0	298.2	14.2
1/3	265	0.172	25.0	298.2	14.4
1/4	670	0.162	25.0	298.2	13.9
1/5	820	0.147	25.0	298.2	13.3
1/6	921	0.147	25.0	298.2	13.3
		İ .			
2/1	14	0.167	25.0	298.2	14.2
2/2	115	0.181	25.0	298.2	14.8
2/3	265	0.186	26.0	299.2	15.0
2/4	670	0.177	26.0	299.2	14.6
2/5	820	0.162	26.0	299.2	14.0
2/6	921	0.137	26.0	299.2	12.9
<u> </u>	<u> </u>				
					
			 		
					-
		<u> </u>	-	_	
			-	-	
					-
					-
<u> </u>			 	·······	
		 	 		
			 	 	
1		1	+-	 	
<u> </u>	- -		+	 - -	
	-		-	 	
	-		 	 -	-
	-		-	 	-
			 		
		 			
			 		
		<u> </u> -		-	-
		1			
	ļ	1	 		
<u> </u>			-	-	
				<u> -</u>	<u> </u>
	<u> </u>			000.5	44.0
Average	<u></u>	<u> </u>	25.3	298.5	14.0

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required): Absolute pressure in stack (hPa):

kPa 3 mm

1014.29 hPa

A=COM

STACK ANALYSIS - PM10 CALCULATIONS

30-Oct-13 60305580 Client: NCIA
Stack/Duct Description: Clay Prep Date: AECOM's Project No: 1. Gas Analysis % 0.0 %¢0₂ 20.9 %O₂ %N₂+%CO 79.1 0.99 Fraction Moisture Content, Bws 2. Molecular Weight of Stack Gas (Dry Basis) Mol. Wt. of Stack Gas (dry) Mol. Wt. of Stack Gas (wet) 28.84 28.71 3. Absolute Stack Pressure Pascals 101400 101429 in. Hg 29.93 29.94 Barometric Pressure (Pbar) Stack Static Pressure (Pg) Absolute Stack Pressure 29.94 4. Viscosity of Stack Gas °F 77.6 °C 25.3 38.0 Average Stack Temp.

Average Meter Temperature:
Stack Gas Viscosity 182.6 5. Cyclone Flow Rate ft³/min 0.45 m³/min 0.0159

6. Nozzle Velocity, Rmin and Rmax

Cyclone Flow Rate

	Talassia Diamatasi	Nozzle '	Volosibu	Rmin	Rmax	Vmin	Vmin	Vmax	Vmax
Nozzle Number	Nozzle Diameter			_		ft/sec	m/s	ft/sec	m/s
	(inches)	ft/sec	m/s	[-]	[-]				
0	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
1	0.135	75.17	24.74	0.754	1.232	56.66	18.59	92.59	30.38
2	0.157	55,59	18.30	0.725	1,249	40.33	13.23	69.46	22.79
3	0.201	34.06	11.21	0.629	1.300	21.41	7.02	44.28	14.53
4	0.000	#DIV/01	#DIV/0!	#DIV/01	#DIV/0I	#DIV/0I	#DIV/0!	#DIV/0!	#DIV/0!
5	0.000	#DIV/0!	#DIV/01	#DIV/0I	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/01
6	0.220	28.57	9.40	0.559	1.328	15.97	5.24	37.93	12.44
7	0.243	23.36	7.69	0.402	1.369	11.68	3.83	31.98	10.49
8	0.261	20.30	6.68	#NUM!	1.404	10.15	3.33	28.49	9.35
9	0.292	16.16	5.32	#NUM!	1.476	8.08	2.65	23.84	7.82
10	0.341	11.89	3.91	#NUM!	1.607	5.94	1.95	17.83	5.85
11	0.391	9.04	2.98	#NUM!	1.766	4.52	1.48	13.56	4.45
- ''		Nozzle	Nozzle	Sample					
	Nozzle Diameter	Diameter	Area	Rate					
Selected Nozzle	(inches)	(m)	(m ²)	(L/min)					
3	0.201	0.005	0.000021	14.3	l				

STACK ANALYSIS - PM10 CALCULATIONS CONTINUED

Date: AECOM's Project No: 30-Oct-13 Client: NCIA 60305580 Stack/Duct Description: Clay Prep

7.Sampling Time Total Run Time 60 Number of points 12

.Sampling Time	Total Run Time	60	Number of
Velocity Head (pitot) Pa	Vel Head	Sqr Root	Dwell time
156.96	in H20	+	mins
130.90	0.63	0.79	4.9
166.77	0.67	0.82	5.1
171.68	0.69	0.83	5.1
161.87	0.65	0.81	5.0
147.15	0.59	0.77	1 47
147.15	0.59	0.77 0.77	4.7
177.10	0.39	0.77	4.7
166.77	0.67	0.82	5.1
181.49 186.39	0.73	0.85	5.3
186 39	0.75	0.86	
170.00	0.73		5.3
176.58	0.71	0.84	5.2
161.87	0.65	0.81	5.0
137.34	0.55	0.74	4.6
	-		
			
			
		 	
	 	t —	
		 	
	T -	1	-
		Ι. —	
		L. T	
		 	
	T		
	+		
			
		L.	-
	 		
	+		
	 		
			
			_
·			
<u> </u>	\Box		
			$\overline{}$
			ı
	Average Square	0.81	60.00

Total time	Full hours	Fuli	Seconds
min	1	minutes	
4.8	.0	4	45
10.0	0	10	0
15.3	0	15	15
20.3	0	20	15
15.3 20.3 25.3	0	20 25 30	15
30.0	0	30	0
		1	_
35.3 40.5	0	35	15
40.5	0	40	15 30
45.8	0	45	45 45 30
50.8	0	50	45
55.5	Ö	55	30
60.0	1 1	1 0	0
		+ ·-	
		+ -	
		+	
		+	
	 	+	
	-	+	
	-	+	
	-	 	
			
		+	
		 	_
	 		-
	 		
		 	
		+	_
	 		
	-	_	
		_	
	-	 	$\vdash \longrightarrow$
	 	l .	
	-	-	
		1	
	-	1	
		 	
		 	
		 	
		\vdash \dashv	
		\vdash	
		F	
		\vdash	
		-	
			-
		— †	
			$\overline{}$

Aerodynamic Cut Size ($u_{\rm eve}$) 183.5 PM₁₀ Flow rate at actual cyclone conditions (Q_a) 0.0125

Actual D₅₀

10.2

AECOM

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

Date: 30

30-Oct-13

Client: NCIA

AECOM's Project No:

60305580 Stack/Duct Description:

Clay Prep

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

0.8283 m³

Average barometric

Average gas meter temp. (T_{M.2}):

38.0 °C

pressure (PBARO)

 $(P_{M,2})$

1014 hPa

311.2 K

Average pressure at meter

1014.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure):

0.7277 m³

(B) PM10 concentration at standard conditions

Blank thimble No.: Thimble No. used:

N/A T131 Blank weight: PM10 Weight

0.0004 g

Final PM10 Weight (Mp1): PM10 Concentration (C1):

0.00040 g

=M_{p1}/MV₄=

0.00055 g/m³ (0°C, dry gas,

1atm pressure)

;and C₂ =

0.55 mg/m³ (0°C, dry gas, 1atm pressure)

02 -

CO₂ Basis

12 %

Average CO_2 %: Therefore, C_c :

 $= C_a \times 12/CO_2\% =$

0.00055 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and C_{c1} =

0.55 mg/m³ (0°C, dry gas, 1atm pressure, 12% CO₂)

O₂ Basis

7 %

Average O₂%:

20.9 %

0.0 %

Therefore, C_b:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

0.077 g/m3 (0°C, dry gas, 1atm pressure,

7% O₂)

;and C_{b1} =

77 mg/m³ (0°C, dry gas, 1atm pressure, 7% O₂)

(C) Moisture content

Silica Gel Number:

V_v =

Z18

6 7 g (from laboratory report)

 $V_{\rm w} =$

0 mL (=grams) (recorded on

Laboratory Form 108)

Volume of Water Vapour Condensed (V_{wc(std)}) =

0.0000

Volume of Water Vapour Condensed (V_{wsg(std)}) =

0.0089

Therefore, $B_{ws} =$

 $(V_{\text{wc(std)}} + V_{\text{wsg(std)}})$

 $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

B_{ws} =

1.21 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

AECOM

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c):

1.28 kg/m³ (0°C, w

1.28 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions = $(ii) \times \underbrace{(273.2)}_{\text{(273.2+Ts)}} \times \underbrace{(Ps)}_{\text{(1013.25)}}$

= 1.174 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 13.66 m/s

(ii) Average of post-sampling velocities: 14.03 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs):

13.84 m/s (stack conditions, wet)
N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A = 10.76 \text{ m}^3/\text{s} \text{ (stack conditions)}$

Qstd = Qstack x \underline{Ps} x $\underline{(Tstd)}$ x $\underline{(100 - B_w)}$ (Pstd) (Ts) 100

Qstd = $9.8 \text{ m}^3/\text{s} (0^{\circ}\text{C, dry gas, 1 atm pressure})$

(G) Mass Emission Rate

A=COM

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

Date: 30-Oct-13 Client: NCIA

AECOM's Project No: 60305580 Stack/Duct Description: Clay Prep

(A) Sample gas volume at standard conditions

Metered volume (MV₃): 0.7211 m³ Average barometric

Average gas meter temp. (T_{M2}): 29.4 °C pressure (P_{BARO}) 1014 hPa

302.6 K Average pressure at meter

(P_{M,2}) 1014.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure): 0.6515 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No.: N/A Blank weight: g
Thimble No. used: T132 Total Particulate Weight 0.0008 g

Final Total Particulate Weight (Mp1): 0.00080 g

Total Particulate Concentration (C1): $=M_{p1}/MV_4=$ 0.0012 g/m³ (0°C, dry gas, 1atm pressure)

;and $C_2 = \frac{1.2 \text{ mg/m}^3 \text{ (0}^\circ\text{C, dry gas,}}{1 \text{ atm pressure)}}$

CO₂ Basis 12 %

Average CO₂%: 0.0 %

Therefore, C_c : = $C_a \times 12/CO_2\% = 0.0012 \text{ g/m}^3 (0^{\circ}\text{C}, \text{dry gas, 1atm})$

pressure, 12% CO₂)

;and C_{c1} = 1.2 mg/m³ (0°C, dry gas, 1atm pressure, 12% CO_2)

O₂ Basis 7 %

Average O₂%: 20.9 %

Therefore, C_b : = $C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 0.17 g/m³ (0°C, dry gas, 1atm pressure,

7% O₂)

;and $C_{b1} = 170 \text{ mg/m}^3 (0^{\circ}\text{C, dry gas, 1atm pressure,} 7\% O_2)$

(C) Moisture content

Silica Gel Number: Z12

 $V_v = 9.7 \text{ g (from laboratory report)}$ $V_w = 0 \text{ mL (=grams)}$ Volume of Water Vapour Condensed ($V_{var(std)}$) = 0.0000 (recorded on

Volume of Water Vapour Condensed $(V_{wc(std)}) = 0.0000$ (recorded on Laboratory Form 108) Volume of Water Vapour Condensed $(V_{wsg(std)}) = 0.0129$

Therefore, $B_{ws} = \frac{(V_{wc(strl)} + V_{weg(strl)})}{(V_{wc(strl)} + V_{weg(strl)})}$

 $(\mathsf{V}_{\mathsf{wc}(\mathsf{std})} {}^+ \mathsf{V}_{\mathsf{wsg}(\mathsf{std})} {}^+ \mathsf{V}_{\mathsf{m}(\mathsf{std})})$

B_{ws} = 1.95 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED **Total Particulate**

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c): 1.29 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions = (ii) x (273.2) x (273.2+Ts) (1013.25)

1.183 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 13.66 m/s

(ii) Average of post-sampling velocities: 14.03 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and post-13.84 m/s (stack conditions, wet) sampling velocities (Vs): N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = Vs x A = 10.76 m³/s (stack conditions)

Qstd = Ostack x Ps x (Tstd) x (100 - B_w) (Pstd) (Ts)

 $9.7~\text{m}^3\text{/s}$ (0°C , dry gas, 1 atm pressure) Qstd =

(G) Mass Emission Rate

EMISSION MONITORING RESULTS, CLAY PREP

NCIA

30-Oct-13 FINE PARTICULATE (PM10) TOTAL PARTICULATE

Sampling Conditions:	995 mm	
Stack internal diameter at test location		298.2 K
Stack gas temperature (average)	25.0 °C	290.2 N
Stack pressure (average)	1014 hPa	
Stack gas velocity (average, stack conditions)	14 m/s	
Stack gas flowrate (stack conditions)	11 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	9.7 m ³ /s	
Fine Particulate (PM10) Testing		
Test Period	10:40 -	11:45
Fine Particulate (PM10) Mass	0.4 mg	
Gas Volume Sampled	0.728 m ³	
Fine Particulate (PM10) Emission*1	0.55 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	5.4 mg/s	
Regulatory Limit	N/A	
Total Particulate Testing		
Test Period	10:40 -	11:43
Total Particulate Mass	0.8 mg	
Gas Volume Sampled	0.652 m ³	
Total Particulate Emission*1	1.2 mg/m ³	
Total Particulate Mass Emission Rate*2	12 mg/s	
Regulatory Limit	20 mg/m ³	
Moisture Content (%)	1.9	
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

A=COM

NCIA

AECOM's Project Number:

60305580

Emission Source:

Kiln 2

Date Sampled:

3-Apr-14

ANALYTE(S)

METHOD

Sulfuric Acid Mist

NSW EPA TM - 3

Sulfur Dioxide

NSW EPA TM - 4

Observations made during testing period:

Sampling Performed By:

Chad Whitburn

James Lang

STACK ANALYSIS - PRE-SAMPLING

Date:

3-Apr-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description: Kiln 2

Test 1:

Sulfuric Acid Mist (H2SO4 as SO3) Sulfur Dioxide (SO2 as SO3)

Test 2:

		Measurement/Obse	rvations	· · ·	
Stack Inter	nal Dimensions:			-	• •
Diameter	980) mm	Cross Sectional Area	= 0.75 n	1 ²
OR	Length	Width		• • • • • • • • • • • • • • • • • • • •	
Length/Wic			Minimum No. of		
Equivalent	Diameter N/A	mm	sampling points=	12	
		-	,,,,,		
Distance from	om sampling plane to		Total No. of sampling	points =	16
nearest dis	turbances:			PM2.5/10=	NA
			No. of sampling traver	ses/ports	
Upstream ((m) = 3		sampled =	·	2
No. Diamet	ters = 3.1			PM2.5/10=	NA
Type of Up	stream Disturbance:	Change in Diameter	No. of sampling points	on each	
Downstread	m (m) = 5		traverse/port =		8
No. Diamet	ters = 5.1			PM2.5/10=	NA
Type of Do	wn Stream Disturbance:	Bend			
			Exclusion of any samp	ole point	
Position of	each sampling point, for	each traverse:	numbers - comments:	•	
	7 31 7				
	Α	В	PM10/2.5 A	PM2.5/	10 B
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot o	
1	32	2			
2	103	73			
3	190	160			
4	317	287			
5	663	633			
6	790	760			-
7	877	847			
8	948	918			
9				1	
10			Check of total points a	ngainst	•
11			minimum, (yes/no) - c	_	
12]		
13]		
14			}		
15]		
16			}		
17]		
18				1	
19			General Comments:	///	
20			/ / / / / / / / / / / / / / / / / / /	'//	
	#1	<u> </u>	//////////////////////////////////////	//	
Signed: 🧘	y C		Checked:		
	V				
=					

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

3-Apr-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Kiln 2

Test 1:

Sulfuric Acid Mist (H2SO4 as SO3)

Test 2:

Sulfur Dioxide (SO2 as SO3)

Sampling time start:	10:36	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	10:36	124	15.7	2.9
2	10:37	124	15.4	3.1
3	10:38	124	15.4	3.1
4	10:39	124	15.4	3.1
5	10:40	124	15.4	3.1
6	10:41	124	15.4	3.1
7	10:42	124	15.4	3.1
8	10:43	124	15.4	3.1
	Averages:	124.0 ppm	15.4 %	3.1 %

Moisture content (M3):

0.95

Moisture percentage (M2):

5.10 %

Measurements

Therefore,	stack gas density (GD) =	1.30 kg/m ³	(0°C, dry, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.27 kg/m ³	(0°C, wet, 1 atm pressure)	
H ₂ O:	5.10 %(=M2)			
CO ₂ :	2.9 %,(wet)	O ₂ :	14.7 %,(wet)	
co:	0.0118 %,(wet)	N ₂ :	77.3 %,(wet)	
Gas Comp	positions converted to wet basis:		·	
CO ₂ :	3.1 %,(dry)	O ₂ :	15.4 %,(dry)	
CO:	0.0124 %,(dry)	N ₂ :	81.5 %,(dry)	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date:

3-Apr-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Kiln 2

Test 1:

Sulfuric Acid Mist (H2SO4 as SO3)

Test 2:

Sulfur Dioxide (SO2 as SO3)

Sampling time start:	12:36	Sampling port No.:	1	· · · · · · · · · · · · · · · · · · ·
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	12:36	122	16,3	2.6
2	12:37	122	16.3	2.6
3	12:38	122	16.3	2.6
4	12:39	122	16.3	2.6
5	12:40	122	16.3	2.6
6	12:41	122	16.3	2.6
7	12:42	122	16.3	2.6
8	12:43	122	16.3	2.6
	Averages:	122.0 ppm	1 16.3 %	

Moisture content (M3):

0.91 9.12 %

Moisture percentage (M2):

Measurements

CO:	0.0122 %,(dry)	N ₂ :	81.1 %,(dry)	
CO ₂ :	2.6 %,(dry)	O ₂ :	16.3 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0111 %,(wet)	N ₂ :	73.7 %,(wet)	
CO ₂ :	2.4 %,(wet)	O ₂ :	14.8 %,(wet)	
H₂O:	9.12 %(=M2)			
Therefore,	stack gas density (GD) =	l 1.25 kg/m ³	(0°C, wet, 1 atm pressure)	_
Therefore,	stack gas density (GD) =	1.30 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:

3-Apr-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Test 1:Sulfuric Acid Mist (H2SO4 as SO3)

Kiln 2

Test 2:Sulfur Dioxide (SO2 as SO3)

Time:	10:30	Barometric P		1012	hPa
Page No. :	1 of 1	Pitot Correction	on Factor:	0.84	
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.27	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
Sampling Position No.	Distance from far wall (mm)	Max. Differential Pressure ΔP, kilo Pascals	Max Temp. °C	Max Temp. (T s) K	
1/1	2	0.118	251.0	524.2	15.8
1/2	73	0.117	252.0	525.2	15.8
1/3	160	0.095	253.0	526.2	14.2
1/4	287	0.078	253.0	526.2	12.9
1/5	633	0.094	253.0	526.2	14.2
1/6	760	0.065	251.0	524.2	11.7
1/7	847	0.078	249.0	522.2	12.9
1/8	918	0.066	249.0	522.2	11.8
170	910	0.000	249.0	J22.2	11.0
2/1	2	0.090	241.0	514.2	13.7
2/2	73	0.071	245.0	518.2	12.2
2/3	160	0.069	246.0	519.2	12.0
2/4	287	0.062	246.0	519.2	11.4
2/5	633	0.088	247.0	520.2	13.6
2/6	760	0.090	247.0	520.2	13.8
2/7	847	0.100	248.0	521.2	14.5
2/8	918	0.121	249.0	522.2	16.0
Average			248.8	522.0	13.5

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required): Absolute pressure in stack (hPa):

kPa 5 mm

1012.49 hPa

STACK ANALYSIS

SAMPLING OF SULFURIC ACID MIST (H2SO4 AS SO3)

Date:

3-Apr-14

NCIA Client:

60305580

AECOM's Project No: Stack Description No.:

Kiln 2

x 10⁻⁵m²

Sample Nozzle No.:

s3

Sample Nozzle Area (An):

Sampling Port No.:

1 to 2

Thimble No:

Page No:

1 of 1

Blank thimble No:

2.83 NΑ NA

146.4056

Time start:

Leak Check (Pre-Sampling)
Meter start: 145.3682 Meter finish: 11:05 Time finish:

145.3682 Meter start: 11:06 Time start:

Leak Check (Post Sampling) Meter start: 146.4056 Meter finish: 12:44 Time finish:

12:45

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments: Repeat:

Comments:

Sampling Record Table

Barometric Pressure:

1012 hPa (start);

1012 hPa (finish)

Meter start:

145.3738

Time start:

11:08

Meter correction factor (GMf):

1.0114

	Stopwatch	f					
	Time at	Distance	Isokinetic	Meter Inlet	Meter Outlet	Impinger Train Outlet	Flowrate
Sampling	Sampling	from far wal!	Flowrate				Attained
osition No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:05:00	32	15.0	37.0	35.0		Yes
1/2	0:10:00	103	15.0	38.0	35.0		Yes
1/3	0:15:00	190	13.5	39.0	36.0		Yes
1/4	0:20:00	317	12.2	40.0	36.0		Yes
1/5	0:25:00	663	13.5	41.0	36.0		Yes
1/6	0:30:00	790	11.1	44.0	38.0		Yes
1/7	0:35:00	877	12.3	44.0	38.0		Yes
1/8	0:40:00	948	11.3	44.0	38.0		Yes
2/1	0:45:00	32	13.3	43.0	38.0		Yes
2/2	0:50:00	103	11.7	44.0	38.0		Yes
2/3	0:55:00	190	11.5	43.0	38.0		Yes
2/4	1:00:00	317	10.9	43.0	38.0		Yes
2/5	1:05:00	663	13.0	43.0	38.0		Yes
2/6	1:10:00	790	13.2	43.0	38.0		Yes
2/7	1:15:00	877	13.9	44.0	39.0		Yes
2/8	1:20:00	948	15.3	44.0	40.0		Yes
						·	
_							
	_						
				· · · · · · · · · · · · · · · · · · ·			
		1					
			-				
		 					
A				40.4	27.4		
Averages leter Finish:		146.4028	<u> </u>	42.1 Time Finish:	37.4	no result 12:35	

Silica gel No(s) used:

Total Condensate collected:

55 ml

F27

A=COM

STACK ANALYSIS

SAMPLING OF SULFUR DIOXIDE (SO2 AS SO3)

Date:

3-Apr-14

NCIA

Client: AECOM's Project No:

60305580

Stack Description No.:

Sample Nozzle No.:

s3

Kiln 2

Sample Nozzie Area (An):

2.83

Sampling Port No.: Page No:

Meter start:

Time start:

1 to 2 1 of 1

Thimble No: Blank thimble No: NA NA

Leak Check (Pre-Sampling)

145.3682 Meter finish:

145.3682 Meter start: 11:05 Time finish: 11:06 Time start:

146.4056 Meter finish: 12:44 Time finish:

146.4056 12:45

 $\times 10^{-5} \text{m}^2$

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Leak Check (Post Sampling)

Repeat: Comments: Repeat: Comments:

Sampling Record Table

Barometric Pressure;

1012 hPa (start);

1012 hPa (finish)

Meter start:

145.3738

Time start:

11:08

Meter correction factor (GMf):

1.0114

	Stopwatch Time at	Distance	Isokinetic	Meter Inlet	Meter Outlet	Impinger Train Outlet	Flowrate
Sampling	Sampling	from far wall	Flowrate				Attained (Y/N)
Position No.	Position	(mm)	(L/min)	Temp. (°C) 37.0	Temp. (°C)_ 35.0	Temp (°C)	Yes
1/1	0:05:00	32 103	15.0 15.0	38.0	35.0	-	Yes
1/3		190	13.5	39.0	36.0	-	Yes
	0:15:00	317	12.2	40.0	36.0		Yes
1/4 1/5	0:20:00 0:25:00	663	13.5	41.0	36.0		Yes
1/6	0:25:00	790	11.1	44.0	38.0	· · · · ·	Yes
1/7	0:35:00	877	12.3	44.0	38.0		Yes
1/8	0:40:00	948	11.3	44.0	38.0	-	Yes
1/0	0.40.00	940		44.0	30.0		100
2/1	0:45:00	32	13.3	43.0	38.0		Yes
2/2	0:50:00	103	11.7	44.0	38.0		Yes
2/3	0:55:00	190	11.5	43.0	38.0		Yes
2/4	1:00:00	317	10.9	43.0	38.0		Yes
2/5	1:05:00	663	13.0	43.0	38.0		Yes
2/6	1:10:00	790	13.2	43.0	38.0		Yes
2/7	1:15:00	877	13.9	44.0	39.0		Yes
2/8	1:20:00	948	15.3	44.0	40.0		Yes
Avorages			_	42.1	37.4	no result	
Averages Meter Finish	<u> </u>	146.4028		Time Finish:	31.4	12:35	

55 ml

F27

Total Condensate collected:

Silica gel No(s) used:

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:

3-Apr-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Kiln 2

Test 1:Sulfuric Acid Mist (H2SO4 as SO3)

Test 2:Sulfur Dioxide (SO2 as SO3)

Time :	12:36	Barometric P	ressure :		hPa
Page No. :	1 of 1	Pitot Correcti	on Factor:	0.84	
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.25	kg/m ³
Pitot Tube Type :	s		·		(0 °C, Wet, 1 Atm)
Rot rase type:		Max.		·-	(,,,,
	Distance	Differential			
Sampling Position	from far wall		May Tomp °C	Max Temp. (Ts) K	Corrected Velocity
No.	(mm)	ΔP, kilo	Iwax remp. C	K	(Vs) m/s
	(111111)	Pascals			•
1/1	2	0.103	245.0	518.2	14.8
1/2	73	0.091	246.0	519.2	14.0
1/3	160	0.078	246.0	519.2	13.0
1/4	287	0.055	247.0	520.2	10.9
1/5	633	0.076	247.0	520.2	12.7
1/6	760	0.065	247.0	520.2	11.8
1/7	847	0.072	248.0	521.2	12.4
1/8	918	0.054	248.0	521.2	10.8
	010	0.001	2 10.0	<u> </u>	1070
2/1	2	0.091	252.0	525.2	14.1
2/2	73	0.069	252.0	525.2	12.2
2/3	160	0.066	253.0	526.2	11.9
2/4	287	0.064	253.0	526.2	11.8
2/5	633	0.088	253.0	526.2	13.8
2/6	760	0.109	253.0	526.2	15.4
2/7	847	0.106	253.0	526.2	15.2
2/8	918	0.092	253.0	526.2	14.1
				-	
,					
			1		
· ·				i -	
	<u> </u>	İ			
·-		1			
	1			· · · · · · · · · · · · · · · · · · ·	
					1
Average			249.8	523.0	13.1

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : k₽a

5 mm 1012.49 hPa

$\Delta \equiv COM$

STACK ANALYSIS - FINAL CALCULATIONS

Sulfuric Acid Mist (H2SO4 as SO3)

(Calculations performed in accordance with relevant test method as defined on cover page)

3-Apr-14

Client:

AECOM's Project No:

60305580 Stack/Duct Description:

Kiln 2

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1 0407 m³

Average barometric

Average gas meter temp. (T_{M.2}):

39.8 °C

pressure (PBARO)

1012 hPa

313.0 K

NCIA

Average pressure at meter

 $(P_{M,2})$

1012.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure):

0.9072 m³

(B) H2SO4 as SO3 concentration at standard conditions

Blank thimble No.:

NA

Blank weight:

Thimble No. used:

NA

0.02600 g

H2SO4 as SO3 Weight

0.026 g

Final H2SO4 as SO3 Weight (Mp1): H2SO4 as SO3 Concentration (C1):

 $=M_{p1}/MV_4=$

0.029 g/m3 (0°C, dry gas, 1atm pressure)

;and $C_2 =$

29 mg/m³ (0°C, dry gas,

1atm pressure)

CO₂ Basis

12 %

Average CO₂%:

2.8 %

Therefore, C_c:

 $= C_a \times 12/CO_2\% =$

0.12 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and C_{c1} =

120 mg/m³ (0°C, dry gas, 1atm

pressure, 12% CO₂)

O₂ Basis

Average O2%:

15.9 %

Therefore, C_b:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

0.079 g/m³ (0°C, dry gas, 1atm pressure,

7% O_2)

;and C_{b1} =

79 mg/m3 (0°C, dry gas, 1atm pressure,

7% O_2)

(C) Moisture content

F27

Silica Gel Number:

13.3 g (from laboratory report)

V_w =

55 mL (=grams) (recorded on

Laboratory Form 108)

Volume of Water Vapour Condensed (Vwc(std)) =

0.0733 0.0178

Volume of Water Vapour Condensed (V_{wsq(std)}) =

Therefore, B_{ws} =

(Vwc(std)+Vwsq(std))

 $(V_{wc(std)} + V_{wsq(std)} + V_{m(std)})$

B_{ws} =

9.12 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Sulfuric Acid Mist (H2SO4 as SO3)

AECOM

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling:

1.27 kg/m3 (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.31 kg/m³ (0°C, wet, 1 atm pressure) 1.30 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

= 0.684 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

13.53 m/s

(ii) Average of post-sampling velocities:

13.06 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and post-

sampling velocities (Vs):

13.29 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

Vs x A =

10.02 m³/s (stack conditions)

Qstd =

Qstack x

<u>Ps</u> x

(Tstd) x (100 - B_w)

(Pstd)

(Ts)

100

Qstd =

4.8 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

$\Delta \equiv COM$

STACK ANALYSIS - FINAL CALCULATIONS

Sulfur Dioxide (SO2 as SO3)

(Calculations performed in accordance with relevant test method as defined on cover page)

3-Apr-14

NCIA Client:

AECOM's Project No:

60305580 Stack/Duct Description:

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.0407 m³

Average barometric

Average gas meter temp. $(T_{M,2})$:

39.8 °C

pressure (PBARO)

1012 hPa

313.0 K

Average pressure at meter

Kiln 2

 $(P_{M,2})$

1012.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure):

0.9072 m³

(B) SO2 as SO3 concentration at standard conditions

12 %

Blank thimble No.:

NA NA

Blank weight: SO2 as SO3 Weight

Thimble No. used: Final SO2 as SO3 Weight (Mp1): SO2 as SO3 Concentration (C1):

0.21000 g

 $=M_{p1}/MV_4=$

0.23 g/m3 (0°C, dry gas,

1atm pressure)

;and C₂ =

230 mg/m³ (0°C, dry gas, 1atm pressure)

CO₂ Basis

Average CO₂%:

2.8 %

15.9 %

Therefore, C_c:

 $= C_a \times 12/CO_2\% =$

0.97 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and C_{c1} =

970 mg/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

O₂ Basis

Average O2%:

7 %

Therefore, C_b:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

0.63 g/m3 (0°C, dry gas, 1atm pressure,

7% O_2)

;and C_{b1} =

630 mg/m³ (0°C, dry gas, 1atm pressure,

55 mL (=grams)

(recorded on

 O_2) 7%

(C) Moisture content

Silica Gel Number: F27

13 3 g (from laboratory report)

Volume of Water Vapour Condensed (Vwc(std)) =

0.0733

Volume of Water Vapour Condensed (V_{wsg(std)}) =

0.0178

Laboratory Form 108)

Therefore, B_{ws} =

 $(V_{wc(std)} + V_{wsg(std)})$

 $(V_{wc(std)}+V_{wsg(std)}+V_{m(std)})$

 $B_{ws} =$

9.12 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Sulfur Dioxide (SO2 as SO3)

A=COM

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling:

1.27 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.31 kg/m³ (0°C, wet, 1 atm pressure) 1.30 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

= 0.684 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities:

13.53 m/s

(ii) Average of post-sampling velocities:

13.06 m/s

(iii) Average of while-sampling velocities:

N/A m/s

(iv) Overall average of pre-sampling and post-

sampling velocities (Vs):

13.29 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack =

Vs x A =

10.02 m³/s (stack conditions)

Qstd =

Qstack x

<u>Ps</u> x

(Tstd) x (100 - B_w)

(Pstd)

(Ts)

100

Qstd =

4.8 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

EMISSION MONITORING RESULTS, KILN 2 NCIA

3-Apr-14 SULFURIC ACID MIST (H2SO4 AS SO3) SULFUR DIOXIDE (SO2 AS SO3)

Sampling Conditions:		
Stack internal diameter at test location	980 mm	
Stack gas temperature (average)	249.3 °C	522.5 K
Stack pressure (average)	1012 hPa	
Stack gas velocity (average, stack conditions)	13 m/s	
Stack gas flowrate (stack conditions)	10 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	4.8 m ³ /s	
Sulfuric Acid Mist (H2SO4 as SO3) Testing		
Test Period	11:08 -	12:35
Sulfuric Acid Mist (H2SO4 as SO3) Mass	26 mg	
Gas Volume Sampled	0.907 m ³	
Sulfuric Acid Mist (H2SO4 as SO3) Emission*1	29 mg/m ³	
Sulfuric Acid Mist (H2SO4 as SO3) Mass Emission Rate*2	140 mg/s	
Regulatory Limit	100 mg/m ³	
Sulfur Dioxide (SO2 as SO3) Testing		
Test Period	11:08 -	12:35
Sulfur Dioxide (SO2 as SO3) Mass	210 mg	
Gas Volume Sampled	0.907 m ³	
Sulfur Dioxide (SO2 as SO3) Emission*1	230 mg/m ³	
Sulfur Dioxide (SO2 as SO3) Mass Emission Rate*2	1100 mg/s	
Regulatory Limit	N/A	
Moisture Content (%)	9.1	
Gas Density (dry at 1 atmosphere)	1.30 kg/m ³	
Dry Molecular Weight	29.1 g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

AECOM

NCIA

AECOM's Project Number:

60305580

Emission Source:

Kiln 2

Date Sampled:

31-Jan-14

ANALYTE(S)

METHOD

Hazardous Substances (Metals)

NSW EPA TM = 12, 13 & 14

Observations made during testing period:

Sampling Performed By:

Caris Burns

Colin Clarke

STACK ANALYSIS - PRE-SAMPLING

Date:

31-Jan-14

Client:

NCIA

60305580

AECOM's Project No: Stack/Duct Description: Kiln 2

Test 1:

Hazardous Substances (Metals)

		Measurement/Obse	rvations		
Stack Inte	rnal Dimensions:				
Diameter		mm NAC III	Cross Sectional Area	= 0.75 n	n ²
OR	Length	Width			
Length/Wi			Minimum No. of		
Equivalent	Diameter N/A	mm	sampling points=	12	
Distance f	rom sampling plane to		Total No. of compline	maluta	40
	sturbances:		Total No. of sampling		16
ricai est uit	stulbances.		No. of sampling traver	PM2.5/10=	NA
Upstream	(m) = 3		sampled =	ses/ports	2
No. Diame			sampleu -	PM2.5/10=	2 NA
	ostream Disturbance:	Change in Diameter	No of campling points		INA
Downstrea		Change in Diameter	No. of sampling points traverse/port =	on each	8
No. Diame			averse/port =	DM2 5/40-	-
	own Stream Disturbance:	Bend		PM2.5/10=	NA
Type of De	own Stream Disturbance.	Delia	[
Position of	f each sampling point, for e	and travarias	Exclusion of any samp	pie point	
OSILION O	each sampling point, for e	each traverse.	numbers - comments:		
	Δ	В	PM10/2.5 A	PM2.5/	10 B
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot of	
1	32	2	Distance from Wall	3-Type Filot (nstances
2	103	73		- -	
3	190	160			
4	317				
-7		1 28/			
		287 633			
5	663	633			
5 6	663 790	633 760			
5 6 7	663 790 877	633 760 847			
5 6 7 8	663 790	633 760			
5 6 7	663 790 877	633 760 847	Check of total points a	gainst	
5 6 7 8 9	663 790 877	633 760 847	Check of total points a		
5 6 7 8 9 10	663 790 877	633 760 847	Check of total points a minimum, (yes/no) - co		
5 6 7 8 9 10 11	663 790 877	633 760 847			
5 6 7 8 9 10 11	663 790 877	633 760 847			
5 6 7 8 9 10 11 12 13	663 790 877	633 760 847			
5 6 7 8 9 10 11 12 13	663 790 877	633 760 847			
5 6 7 8 9 10 11 12 13 14 15	663 790 877	633 760 847			
5 6 7 8 9 10 11 12 13 14 15 16	663 790 877	633 760 847			
5 6 7 8 9 10 11 12 13 14 15 16	663 790 877	633 760 847	minimum, (yes/no) - co		
5 6 7 8 9 10 11 12 13 14 15 16 17	663 790 877	633 760 847			
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	663 790 877	633 760 847	minimum, (yes/no) - co		
5 6 7 8 9 10 11 12 13 14 15 16 17 18	663 790 877 948	633 760 847	minimum, (yes/no) - co		

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

31-Jan-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Kiln 2

Test 1:

Hazardous Substances (Metals)

Sampling time start:	8:20	Sampling port No.:	0	-
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	8:20	89	15.6	3.0
2	8:21	89	15.6	3.0
3	8:22	89	15.6	3.0
4	8:23	89	15.6	3.0
5	8:24	89	15.6	3.0
6	8:25	89	15.6	3.0
7	8:26	89	15.6	3.0
8	8:27	89	15.6	3.0
	Averages:	89.0 ppm	15.6 %	3.0 %

Moisture content (M3):

0.95

Moisture percentage (M2):

5.00 %

Measurements

CO:	0.0089 %,(dry)	N ₂ .	81.4 %,(dry)	
CO ₂ :	3.0 %,(dry)	O ₂ :	15.6 %,(dry)	
Gas Com	positions converted to wet basis:		<u>_</u> .	
CO:	0.0085 %,(wet)	N ₂ :	77.3 %,(wet)	
CO ₂ :	2.9 %,(wet)	O ₂ :	14.8 %,(wet)	
H ₂ O:	5.00 %(=M2)			
Therefore	, stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	, stack gas density (GD) =	1.30 kg/m ³	(0°C, dry, 1 atm pressure)	

STACK ANALYSIS GAS COMPOSITION AND DENSITY POST-SAMPLING

Date:

31-Jan-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Kiln 2

Test 1:

Hazardous Substances (Metals)

Sampling time start:	10:20	Sampling port No.:	0	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	10:20	90	15.9	2.8
2	10:21	90	15.9	2.8
3	10:22	90	15.9	2.8
4	10:23	90	15.9	2.8
5	10:24	90	15.9	2.8
6	10:25	90	15.9	2.8
7	10:26	90	15.9	2.8
8	10:27	90	15.9	2.8
	Averages:	90.0 ppm	15.9 %	

Moisture content (M3):

0.93

Moisture percentage (M2):

6.83 %

Measurements

CO:	0.0090 %,(dry)	N ₂ :	81.3 %,(dry)	
CO ₂ :	2.8 %,(dry)	O ₂ :	15.9 %,(dry)	
Gas Com	positions converted to wet basis:			
co:	0.0084 %,(wet)	N ₂ :	75.7 %,(wet)	
CO ₂ :	2.6 %,(wet)	O ₂ :	14.8 %,(wet)	
H ₂ O:	6.83 %(=M2)			
Therefore	, stack gas density (GD) =	1.27 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	, stack gas density (GD) =	1.30 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:

31-Jan-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Kiln 2

Test 1:Hazardous Substances (Metals)

Time :	8:30	Barometric P	ressure :	1014	hPa
Page No. :	1 of 1	Pitot Correction	on Factor :	0.84	
Sampling Port No:	1 to 2	Stack Gas De		1.28	kg/m ³
	S	Oldon Gao B	5.1.0.ty.		(0 °C, Wet, 1 Atm)
Pitot Tube Type:		Max.			(4 = , = 1,
	Distance	Differential	ļ		
Sampling Position	from far wall	1 - 110		Max Temp. (Ts)	Corrected Velocity
No.		ΔP, kilo	INIAX Lemp. C	K	(Vs) m/s
	(mm)	Pascals			
1/1	2	0.117	175.0	448.2	14.6
1/2	73	0.125	175.0	448.2	15.0
1/3	160	0.084	175.0	448.2	12.4
1/4	287	0.076	175.0	448.2	11.7
1/5	633	0.077	175.0	448.2	11.8
1/6	760	0.080	176.0	449.2	12.1
1/7	847	0.067	177.0	450.2	11.0
1/8	918	0.065	180.0	453.2	10.9
1/0	910	0.000	100.0	1,00	
2/1	2	0.092	167.0	440.2	12.8
2/2	73	0.091	168.0	441.2	12.8
2/3	160	0.080	169.0	442.2	12.0
2/4	287	0.080	172.0	445.2	12.0
2/5	633	0.081	174.0	447.2	12.1
2/6	760	0.110	178.0	451.2	14.2
2/7	847	0.104	183.0	456.2	13.9
2/8	918	0.092	185.0	458.2	13.1
	910	0.002	100.0		
		<u> </u>	 		
	 		 		
				 	
	 	 			
	 	 			
	 				
ļ — — —	 		+		
	 	 			
<u> </u>	+				
					
	 		 		
 	+		+		
	+	+ -		 	
	 - -	 	 	+	
		 	+		
	+	+	+	 	<u> </u>
ļ	+	+	+	 	
	 	+		+	
		+	_	 	
	-	+		 	
	+	+	- 	+	
Augrans	+	+	175.3	448.5	12.7
Average		<u> </u>	170.0	110.0	1 :=:

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) :

kPa

-3.2 mm 1013.69 hPa

STACK ANALYSIS

SAMPLING OF HAZARDOUS SUBSTANCES (METALS)

Date:

31-Jan-14

NCIA Client:

60305580

AECOM's Project No: Stack Description No.:

Sample Nozzle No.:

Kiln 2 g6

Sample Nozzle Area (An):

2.81

Sampling Port No.:

1 to 2

Thimble No:

x 10⁻⁵m²

Page No:

1 of 1

Blank thimble No:

O 0

Leak Check (Pre-Sampling)

118.6026 Meter finish:

8:42 Time finish:

Leak Check (Post Sampling) 118.6026 Meter start: 8:43 Time start:

119.8903 Meter finish: 10:19 Time finish:

119.8903

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

no leak L/min

10:20

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments:

Meter start:

Time start:

Repeat: Comments:

Sampling Record Table

Meter correction factor (GMf):

Barometric Pressure:

1014 hPa (start);

1014 hPa (finish)

Meter start:

118.6039

Time start: 1.0129

8:47

	Stopwatch				T		
	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:05:36	32	16.1	31.0	20.0	, , ,	Yes
1/2	0:11:12	103	16.6	34.0	22.0		Yes
1/3	0:16:48	190	13.7	35.0	23.0		Yes
1/4	0:22:24	317	12.9	35.0	23.0		Yes
1/5	0:28:00	663	13.0	37.0	25.0		Yes
1/6	0:33:36	790	13.3	38.0	25.0		Yes
1/7	0:39:12	877	12.1	39.0	25.0		Yes
1/8	0:44:48	948	11.9	40.0	26.0		Yes
2/1	0:50:24	32	14.4	42.0	26.0		Yes
2/2	0:56:00	103	14.4	44.0	26.0		Yes
2/3	1:01:36	190	13.4	45.0	27.0		Yes
2/4	1:07:12	317	13.3	47.0	27.0		Yes
2/5	1:12:48	663	13.4	47.0	27.0		Yes
2/6	1:18:24	790	15.6	48.0	27.0		Yes
2/7	1:24:00	877	15.1	48.0	28.0		Yes
2/8	1:29:36	948	14.2	48.0	28.0		Yes
					İ		
					İ		
				1			
	·						
					1		
	,				İ		i
					İ		
Averages	"			41.1	25.3	no result	

Meter Finish:

119.8883

62 ml

Time Finish:

Silica gel No(s) used:

10:17

Total Condensate collected:

T2

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:

31-Jan-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Kiln 2

Test 1:Hazardous Substances (Metals)

1 of 1 1 to 2 S	Pitot Correction Stack Gas De		0.84 1.27	kg/m ³
<u>s</u>		ensity:	1.27	ka/m=
Distance				(0 °C, Wet, 1 Atm)
Distance	Max.			
Distance	Differential		Max Temp. (Ts)	Corrected Velocity
from far wall	Pressure	Max Temp. °C	K	(Vs) m/s
(mm)	ΔP, kilo		'`	[
(,				
2	0.087			12.7
73	0.089	181.0		12.9
160	0.093	182.0		13.2
287	0.075			11.8
	0.050	183.0		9.7
760	0.069			11.3
847	0.064	184.0		10.9
918	0.062	185.0	458.2	10.8
			<u> </u>	
2	0.084			12.5
73	0.079	183.0		12.2
160	0.064			10.9
	0.059			10.5
	0.060	185.0		10.6
	0.077	186.0		12.1
		186.0	459.2	12.9
	0.093	187.0	460.2	13.2
 				<u> </u>
-				
 				
 				
+				
+	+			
+	- 		T	
+		+		
+	+	 		
 	+			
	+			
+		+		
+		+	+	
	+		+	+
_				+
				+
				
		400.0	457 D	11.8
	2 73 160 287 633 760 847 918	Pascals 2 0.087 73 0.089 160 0.093 287 0.075 633 0.050 760 0.069 847 0.064 918 0.062 2 0.084 73 0.079 160 0.064 287 0.059 633 0.060 760 0.077 847 0.089	Pascals 2 0.087 181.0 73 0.089 181.0 160 0.093 182.0 287 0.075 182.0 633 0.050 183.0 760 0.069 183.0 847 0.064 184.0 918 0.062 185.0 2 0.084 183.0 73 0.079 183.0 160 0.064 184.0 287 0.059 185.0 633 0.060 185.0 760 0.077 186.0 847 0.089 186.0	Pascals 2 0.087 181.0 454.2 73 0.089 181.0 454.2 160 0.093 182.0 455.2 287 0.075 182.0 456.2 633 0.050 183.0 456.2 760 0.069 183.0 456.2 847 0.064 184.0 457.2 918 0.062 185.0 458.2 2 0.084 183.0 456.2 73 0.079 183.0 456.2 160 0.064 184.0 457.2 287 0.059 185.0 458.2 633 0.060 185.0 458.2 760 0.077 186.0 459.2 847 0.089 186.0 459.2 918 0.093 187.0 460.2

Static Pressure (Dwyer) (Pa):

Static Pressure (U-tube, if required):

Absolute pressure in stack (hPa):

kPa

-4.1 mm 1013.60 hPa

Stack Analysis - Hazardous Substances Elemental Analysis Results

31-Jan-14

AECOM's Project No:

Client:

60305580 Stack/Duct Description:

Kiln 2

	Particulate Metals Results	Gaseous Metals Results	Oixdi	sable Mercury I	Results	
Metal	Front Half, Filter, Acetone Rinses and Acid Rinses (mg). Containers 1, 2 and	ront Half, Filter, Acetone Rinses and Acid Rinses Back Half, Impingers + Acid		KMnO ₄ / H ₂ SO ₄ + Rinses (mg) (5B)	Residue Rinse 8N HCl (mg) (lf Required) (5C)	
Antimony	0.00045	0.00054				
Anumony	0.014	0.0014				
Beryllium	<0.0001	<0.0001				
Cadmium	0.021	0.006				
Chromium	0.022	0.0048				
Cobalt	<0.0001	<0.0001				
	0.0034	0.00014				
Copper Lead	0.06	0.016				
Magnesium	0.068	0.0023				
Manganese	0,0094	<0.0071		<u> </u>	-0.0005	
Mercury	0.00095	0.0022	<0.0001	0.0047	<0.0005	
Nickel	0.0024	<0.0001				
Selenium	0.0083	0.0023	100000000000000000000000000000000000000			
Thallium	0.004	0.0016				
Tin	0.0065	0.00055				
Vanadium	0.0004	<0.0001				
Variaulum	17	0.27				

Zinc 1.7 0.27

Note: Where the blank has returned a less than value, half of this value was subtracted from the sample result as a blank correction

Stack Analysis - Hazardous Substances Elemental Analysis Results Continued

Date: AECOM's Project No:

31-Jan-14

Client:

NCIA

60305580 Stack/Duct Description:

Kiln 2

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
			0.00054	0.00047			0.001	0.00086	0.0044
Antimony	0.00045	0.00039	0.00034	0.0012			0.02	0.017	0.087
Arsenic	0.014	0.012	<0.00014	<0.000086			<0.000015	<0.000013	<0.000067
Beryllium	<0.0001	<0.000086		0.0052			0.03	0.026	0.13
Cadmium	0.021	0.018	0.006	0.0032			0.03	0.026	0.13
Chromium	0.022	0.019	0.0048	<0.00041			< 0.00015	< 0.00013	< 0.00067
Cobalt	<0.0001	<0.000086	<0.0001				0.004	0.0034	0.017
Соррег	0.0034	0.0029	0.00014	0.00012			0.08	0.069	0.35
Lead	0.06	0.052	0.016	0.014			0.07	0.06	0.31
Magnesium	0.068	0.059	0.0023	0.002			0.0094	0.0081	0.042
Manganese	0.0094	0.0081	<0.0071	<0.0061	0.0047	0.004	0.003	0.0026	0.013
Мегситу	0.00095	0.00082	0.0022	0.0019	0.0047	0.004	0.0024	0.0021	0.011
Nickel	0.0024	0.0021	<0.0001	<0.000086			0.0024	0.0086	0.044
Selenium	0.0083	0.0071	0.0023	0.002			0.006	0.0052	0.027
Thailium	0.004	0.0034	0.0016	0.0014			0.007	0.006	0.031
Tin	0.0065	0.0056	0.00055	0.00047			0.0004	0.00034	0.0017
Vanadium	0.0004	0.00034	< 0.0001	<0.000086			2	1.7	8.7
Zinc	1.7	1.5	0.27	0.23	<u> </u>		 -	+ -'-'	
Total Hazardous	0.14	0.12	0.035	0.03	0.0047	0.004	0.2	0.17	88.0
Metals*		 	- 0.24	0.26	+	 	2.3	2	10
Total Metals	1.9	1.7	0.31	0.26					

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

ie for a blank value of <0.0005, 0.00025 was subtracted from the sample result.

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

STACK ANALYSIS - FINAL CALCULATIONS

(Calculations performed in accordance with relevant test method as defined on cover page)

Date:

31-Jan-14

Client:

NCIA

AECOM's Project No:

60305580 Stack/Duct Description:

Kiln 2

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.3010 m³

Average barometric

1014 hPa

Average gas meter temp. (T_{M,2}):

33.2 °C

pressure (PBARO) Average pressure at meter

306.4 K

 $(P_{M,2})$

1014.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure):

1.1609 m³

(B) Metals concentration at standard conditions

Blank thimble No.:

0

Blank weight: Metals Weight 0.0002 g

Thimble No. used: Final Metals Weight (Mp1): Metals Concentration (C1):

0.00020 g

 $=M_{p1}/MV_4=$

0.00017 g/m³ (0°C, dry gas,

1atm pressure)

;and $C_2 =$

0.17 mg/m3 (0°C, dry gas, 1atm pressure)

CO₂ Basis

12 %

Average CO₂%:

2.9 %

 $= C_a \times 12/CO_2\% =$ Therefore, C_c:

0.0007 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and C_{c1} =

0.7 mg/m3 (0°C, dry gas, 1atm pressure, 12% CO₂)

O₂ Basis

7 %

Average O2%:

Therefore, C_b:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

15.8 %

0.00045 g/m3 (0°C, dry gas, 1atm pressure,

 O_2)

;and C_{b1} =

0.45 mg/m³ (0°C, dry gas, 1atm pressure, 7% O_2)

(C) Moisture content

Silica Gel Number:

T2

11.5 g (from laboratory report)

 $V_w =$

62 mL (=grams)

V_v = Volume of Water Vapour Condensed (V_{wc(std)}) =

0.0826 0.0154 (recorded on Laboratory Form 108)

Volume of Water Vapour Condensed (Vwsg(std)) = (Vwc(strl)+Vwsg(strl)) Therefore, B_{ws} =

 $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

B_{ws} =

7.78 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED Hazardous Substances (Metals)

	(
(D) Gas Con	nposition a	nd Density (R	e-calculation)	
(i) Initial gas	density for	sampling:		1.28 kg/m ³ (fro	om Laboratory Form 107)
(ii) Re-calcula content in (c)	ated gas de	ensity based o	on moisture	1.30 kg/m³ (0°c	C. wet. 1 atm pressure)
(iii) Gas dens	itv at stack	Conditions -	_	1.30 kg/m ³ (0°0	C, dry, 1 atm pressure)
,	y at otaon	Conditions	=		(ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)
(E) Gas Veloc	ities		=	0.785 kg/m³ (sta	ck conditions, wet)
(i) Average of	pre-sampli	ing velocities:		12.65 m/s	
(ii) Average of	post-samp	oling velocities	s:	11.76 m/s	
(iii) Average of				N/A m/s	
(iv) Overall ave sampling veloc (Note : (Vs) is f and (ii) alone.)	aues (vs)			12.21 m/s (stack o N/A m/s (stack o	conditions, wet) conditions, wet)
(F) Volumetric I	Flowrates (Reference M	ethod US-EF	'A Method 2, NSW-EPA	TM-2)
Qstack =		Vs x A =		9.21 m ³ /s (stack	
Qstd = Qsi		<u>Ps</u> x (Pstd)	<u>(Tstd)</u> x (Ts)	(100 - B _w) 100	
Qstd =	5.1	m³/s (0°C, dr)	/ gas, 1 atm _l	pressure)	
(G) Mass Emiss	ion Rate				
Rm = C _{1a}	x Qstd = =	0.00087 0.87	g/s (0°C, d mg/s (0°C,	ry gas, 1 atm pressure dry gas, 1 atm pressure))
C _{1a} :	x Qstd =	0.0036	g/s (0°C, dr	y gas, 1 atm pressure	12% CO ₂)

mg/s (0°C, dry gas, 1 atm pressure

g/s (0°C, dry gas, 1 atm pressure

mg/s (0°C, dry gas, 1 atm pressure

3.6

0.0023

2.3

C_{1a} x Qstd =

12%

12%

7%

7%

 CO_2)

CO₂)

 O_2)

O₂)

EMISSION MONITORING RESULTS, KILN 2 NCIA

31-Jan-14 HAZARDOUS SUBSTANCES (METALS)

Sampling Conditions: Stack internal diameter at test location Stack gas temperature (average) Stack pressure (average) Stack gas velocity (average, stack conditions) Stack gas flowrate (stack conditions) Stack gas flowrate (0°C, dry gas, 1 atm pressure)	980 mm 179.5 °C 1014 hPa 12 m/s 9.2 m ³ /s 5.1 m ³ /s	452.7 K
Hazardous Substances (Metals) Testing Test Period Hazardous Substances (Metals) Mass Gas Volume Sampled Hazardous Substances (Metals) Emission*1 Hazardous Substances (Metals) Mass Emission Rate*2 Regulatory Limit Moisture Content (%)	8:47 0.2 mg 1.16 m³ 0.17 mg/m³ 0.87 mg/s 1 mg/m³ 7.8	10:17
Gas Density (dry at 1 atmosphere) Dry Molecular Weight	1.30 kg/m ³ 29.1 g/g-m ol e	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

NCIA

AECOM's Project Number:

60305580

Emission Source:

Kiln 1

Date Sampled:

30-Jan-14

ANALYTE(S)

METHOD

Hazardous Substances (Metals)

NSW EPA TM - 12, 13 & 14

Sulfuric Acid Mist

NSW EPA TM - 3

Sulfur Dioxide

NSW EPA TM - 4

Observations made during testing period:

Sampling Performed By:

Colin Clarke

STACK ANALYSIS - PRE-SAMPLING

Date: 30-Jan-14 Client: NCIA

AECOM's Project No: 60305580

Stack/Duct Description: Kiln 1

Test 1: Hazardous Substances (Metals)
Test 2: Sulfuric Acid Mist (H2SO4 as SO3)
Test 3: Sulfur Dioxide (SO2 as SO3)

165(5.	Sullul Dioxide (SO2 as S			
		Measurement/Obse	rvations	
Stack Inter	rnal Dimensions:			
Diameter OR	980 Length	mm Width	Cross Sectional Area	0.75 m^2
Length/Wid	dth (mm)		Minimum No. of	
Equivalent	Diameter N/A	mm	sampling points=	12
nearest dis Upstream (No. Diame	(m) = 3	Change in Diameter	Total No. of sampling No. of sampling travel sampled = No. of sampling points	PM2.5/10= NA rses/ports 2 PM2.5/10= NA
Downstrea	m (m) = 5	3	traverse/port =	8
No. Diame Type of Do	ters = 5.1 wn Stream Disturbance:	Bend		PM2.5/10= NA
Position of	each sampling point, for	Exclusion of any sample point numbers - comments:		
	A	В	PM10/2.5 A	PM2.5/10 B
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot distances
1	32	2		
2 3	103 190	73		
4	317	160 287		
5	663	633		
6	790	760	<u> </u>	
7	877	847		
8	948	918		
9				
10 11 12 13 14 15			Check of total points a minimum, (yes/no) - c	
16 17 18				
19 20			General Comments:	-
Signed:	all		Checked:	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

30-Jan-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Test 1:

Kiln 1

Hazardous Substances (Metals)

Test 2:

Sulfuric Acid Mist (H2SO4 as SO3)

Test 3:

Sulfur Dioxide (SO2 as SO3)

Sampling time start:	8:15	Sampling port No.:	1			
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)		CO ₂ (%), (dry)	
1	8:15	27	17.5		1.9	
2	8:16	27	17.5		1.9	
3	8:17	27	17.5		1,9	
4	8:18	27	17.5		1.9	
5	8:19	27	17.5		1.9	
6	8:20	27	17.5	_	1.9	-
7	8:21	27	17.5		1.9	
8	8:22	27	17.5		1.9	
	Averages:	27.0 pp		%	1.9	%

Moisture content (M3):

0.95

Moisture percentage (M2):

5.00 %

Measurements

CO:	0.0027 %,(dry)	N ₂ :	80.6 %,(dry)	
CO ₂ :	1.9 %,(dry)	O ₂ :	17.5 %,(dry)	
Gas Com	positions converted to wet basis:			
co:	0.0026 %,(wet)	N_2 :	76.6 %,(wet)	
CO ₂ :	1.8 %,(wet)	O ₂ :	16.6 %,(wet)	
H₂O:	5.00 %(=M2)			
Therefore	stack gas density (GD) =	1.27 kg/m ³	(0°C, wet, 1 atm pressure)	<u> </u>
Therefore	stack gas density (GD) =	1.30 kg/m ³	(0°C, dry, 1 atm pressure)	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date:

30-Jan-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Kiln 1

Test 1:

Hazardous Substances (Metals)

Test 2:

Sulfuric Acid Mist (H2SO4 as SO3)

Test 3:

Sulfur Dioxide (SO2 as SO3)

Sampling time start:	9:45	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	9:45	42	16.9	2.3
2	9:46	42	16.9	2.3
3	9:47	42	16.9	2.3
4	9:48	42	16.9	2.3
5	9:49	42	16.9	2.3
6	9:50	42	16.9	2.3
7	9:51	42	16.9	2.3
8	9:52	42	16.9	2.3
	Averages:	42.0 ppm		

Moisture content (M3):

0.97 3.22 %

Moisture percentage (M2):

Measurements

CO:	0.0042 %,(dry)	N ₂ :	80.8 %,(dry)	
CO ₂ :	2.3 %,(dry)	O ₂ :	16.9 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0041 %,(wet)	N ₂ :	78.2 %,(wet)	
CO ₂ :	2.2 %,(wet)	O ₂ :	16.4 %,(wet)	
H ₂ O:	3.22 %(=M2)			
Therefore,	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.30 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:

30-Jan-14

Client:

NCIA

60305580

AECOM's Project No:

Stack/Duct Description:

Kiln 1

Test 1:Hazardous Substances (Metals)

Test 2:Sulfuric Acid Mist (H2SO4 as SO3)

Test 3:Sulfur Dioxide (SO2 as SO3)

Time :	8:10	Barometric P	Proceure :	1014	hPa
Page No. :	1 of 1	Pitot Correcti		0.84	nra
Sampling Port No:	1 to 2				kg/m ³
		Stack Gas D	ensity.	1.27	
Pitot Tube Type :	<u> </u>	Management			(0 °C, Wet, 1 Atm)
Sampling Position No.	Distance from far wall (mm)	Max. Differential Pressure ΔP, kilo Pascals	Max Temp. °C	Max Temp. (Ts) K	Corrected Velocity (Vs) m/s
1/1	2	0.099	277.0	550.2	14.9
1/2	73	0.116	276.0	549.2	16.1
1/3	160	0.116	274.0	547.2	16.0
1/4	287	0.104	273.0	546.2	15.2
1/5	633	0.066	268.0	541.2	12.0
1/6	760	0.077	266.0	539.2	12.9
1/7	847	0.083	266.0	539.2	13.5
1/8	918	0.065	263.0	536.2	11.9
2/1	2	0.098	253.0	526.2	14.5
2/2	73	0.131	256.0	529.2	16.8
2/3	160	0.127	259.0	532.2	16.5
2/4	287	0.114	271.0	544.2	15.9
2/5	633	0.090	266.0	539.2	14.1
2/6	760	0.095	261.0	534.2	14.4
2/7	847	0.079	260.0	533.2	13.1
2/8	918	0.049	261.0	534.2	10.3
				· ·	
Average			265.6	538.8	14.3

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required): Absolute pressure in stack (hPa):

-4.6 mm 1013.55 hPa

SAMPLING OF HAZARDOUS SUBSTANCES (METALS)

Date:

30-Jan-14

Client:

NCIA AECOM's Project No:

60305580

Stack Description No.:

Sample Nozzle No.:

g6

Sample Nozzle Area (An): Thimble No:

2.81

N/A

Sampling Port No.: Page No:

1 to 2

1 of 1

Kiln 1

Blank thimble No:

N/A

Leak Check (Pre-Sampling) Meter start: Time start:

116.2148 Meter finish: 8:26 Time finish:

Leak Check (Post Sampling) 116.2148 Meter start: 8:27 Time start:

117.4945 Meter finish: 10:09 Time finish:

117.4945 10:10

x 10⁻⁵m²

Therefore, leakage rate = no leak

L∕min

Therefore, leakage rate = no leak L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments:

Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1014 hPa (start); 116.2160

1014 hPa (finish)

Meter start:

Time start:

8:30

Meter correction factor (GMf):

1.0129

	Stopwatch						
	Time at	Distance	Isokinetic		l	Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet		Train Outlet	Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:06:00	32	13.4	36.0	20.0		Yes
1/2	0:12:00	103	14.5	37.0	21.0		Yes
1/3	0:18:00	190	14.5	38.0	22.0		Yes
1/4	0:24:00	317	13.8	39.0	22.0		Yes
1/5	0:30:00	663	11.0	41.0	23.0		Yes
1/6	0:36:00	790	11.8	42.0	24.0		Yes
1/7	0:42:00	877	12.4	43.0	24.0		Yes
1/8	0:48:00	948	11.0	45.0	26.0		Yes
2/1	0:54:00	32	13.6	45.0	27.0		Yes
2/2	1:00:00	103	15.7	46.0	27.0	-	Yes
2/3	1:06:00	190	15.3	46.0	28.0		Yes
2/4	1:12:00	317	14.5	46.0	28.0		Yes
2/5	1:18:00	663	12.9	46.0	28.0		Yes
2/6	1:24:00	790	13.3	46.0	28.0		Yes
2/7	1:30:00	877	12.2	46.0	29.0		Yes
2/8	1:36:00	948	9.5	46.0	29.0		Yes
		 					
					 		
							
_					-		
_							
 -							
					-		
						_	
		-	_				
							
		-			+		
		-			<u> </u>		
		-				_	
-							
Averages				43.0	25.4		
Averages Meter Finish:		117,4930		43.0 Time Finish:	25.4	no result 10:08	

Total Condensate collected:

117.4930 29 mi

Silica gel No(s) used:

F99

SAMPLING OF SULFURIC ACID MIST (H2SO4 AS SO3)

Date:

30-Jan-14

NCIA Client:

60305580

AECOM's Project No: Stack Description No.:

Kiln 1

Sample Nozzle No.:

old61

Sample Nozzle Area (An):

2.2

Sampling Port No.: Page No:

1 to 2

Thimble No:

N/A

1 of 1

Blank thimble No:

N/A

Leak Check (Pre-Sampling)

99.9936 Meter finish: 8:27 Time finish:

Leak Check (Post Sampling) 99.9936 Meter start: 8:28 Time start:

101.0339 Meter finish: 10:10 Time finish:

101.0339 10:11

 $x 10^{-5} m^2$

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat:

Repeat:

Comments:

Meter start:

Time start:

Comments:

Sampling Record Table

Barometric Pressure:

1014 hPa (start);

1014 hPa (finish)

Meter start: 99.9966

Time start: 0159

8:30

Meter	correction	factor	(GMf):	1.0

	Champanal						
	Stopwatch Time at	Distance	I= =1-:			Impinger	
Sampling	Sampling	Distance from far wall	Isokinetic	Meter Inlet	Meter Outlet	Train Outlet	Flowrate
Sampling Position No.	Position		Flowrate				Attained
1/1	0:06:00	(mm) 32	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/2	0:12:00	103	10.5 11.4	28.0	24.0		Yes
1/3	0:12:00	190		28.0	25.0		Yes
1/4	0:18:00	317	11.4 10.8	29.0	26.0		Yes
1/5	0:30:00	663	8.6	30.0	27.0		Yes
1/6	0:36:00	790	9.3	30.0	27.0	_	Yes
1/7	0:42:00	877	9.3	30.0 31.0	27.0 27.0		Yes
1/8	0:42:00	948					Yes
1/6	0.46.00	948	8.6	31.0	27.0		Yes
2/1	0:54:00	32	10.7	31.0	27.0		Yes
2/2	1:00:00	103	12.3	31.0	28.0		
2/3	1:06:00	190	12.0	32.0	28.0		Yes Yes
2/4	1:12:00	317	11.4	32.0	29.0		
2/5	1:18:00	663	10.2	33.0	29.0		Yes
2/6	1:24:00	790	10.5	33.0	29.0		Yes Yes
2/7	1:30:00	877	9.5	32.0	30.0		
2/8	1:36:00	948	7.5	32.0	30.0		Yes
270	1.50.00	340		32.0	30.0		Yes
	-	_	-				···
	-						
		-				_	
				_			
			-		_		
					-		
		_		·			
_							
_		-					
-							
				_			
	_						
					-		
-			·				
	<u> </u>				 		
Averages	-			30.8	27.5	no result	
Meter Finish:		101.0324		Time Finish:	21.0	10:08	

Total Condensate collected:

0 ml

Silica gel No(s) used:

Z11

#N/A

Date: 30-Jan-14

NCIA Client:

60305580

AECOM's Project No: Stack Description No.:

Kiln 1

old61

Sample Nozzle Area (An):

2.2 x 10⁻⁵m²

Sample Nozzle No.: Sampling Port No.: Page No:

1 to 2

Thimble No:

Time start:

1 of 1

Blank thimble No:

0 N/A

Leak Check (Pre-Sampling)

Meter start:

99.9936 Meter finish: 8:27 Time finish:

99.9936 Meter start: 8:28 Time start:

101.0339 Meter finish: 10:10 Time finish:

101.0339

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

no leak L/min

10:11

(>0.1 l/min. is unacceptable)

(>0.1 l/min, is unacceptable)

Leak Check (Post Sampling)

Repeat: Comments: Repeat: Comments:

Time start:

Sampling Record Table

Barometric Pressure:

1014 hPa (start);

1014 hPa (finish)

Meter start:

99.9966

8:30

Meter correction factor (GMf):

1.0159

	Stopwatch			_	1		
	Time at	Distance	Isokinetic		1	Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet		Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:06:00	32	10.5	28.0	24.0		Yes
1/2	0:12:00	103	11.4	28.0	25.0		Yes
1/3	0:18:00	190	11.4	29.0	26.0		Yes
1/4	0:24:00	317	10.8	30.0	27.0		Yes
1/5	0:30:00	663	8.6	30.0	27.0		Yes
1/6	0:36:00	790	9.3	30.0	27.0		Yes
1/7	0:42:00	877	9.7	31.0	27.0		Yes
1/8	0:48:00	948	8.6	31.0	27.0		Yes
2/1	0:54:00	32	10.7	31.0	27.0		Yes
2/2	1:00:00	103	12.3	31.0	28.0		Yes
2/3	1:06:00	190	12.0	32.0	28.0		Yes
2/4	1:12:00	317	11.4	32.0	29.0		Yes
2/5	1:18:00	663	10.2	33.0	29.0		Yes
2/6	1:24:00	790	10.5	33.0	29.0		Yes
2/7	1:30:00	877	9.5	32.0	30.0		Yes
2/8	1:36:00	948	7.5	32.0	30.0		Yes
		 					
		-					
							
		<u> </u>					
		-					
		 					
		 -					
					<u> </u>		
					-		
-							
						_	
		-					
							
					_		
		-					
_							
		-		-			
							
Averages				30.8	27.5	no result	
Meter Finish:		101.0324		Time Finish:	27.0	10:08	

Meter Finish: Total Condensate collected: 101.0324 0 ml

Silica gel No(s) used:

Z11

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:

30-Jan-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Kiln 1

Test 1:Hazardous Substances (Metals)

Test 2:Sulfuric Acid Mist (H2SO4 as SO3)

Test 3:Sulfur Dioxide (SO2 as SO3)

Time : Page No. :	10:14 1 of 1	Barometric P Pitot Correction		1014 0.84	hPa
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.28	kg/m ³
Pitot Tube Type :	s			0	(0 °C, Wet, 1 Atm)
1,121		Max.	 -	 -	(O O, Wet, I Attil)
Complian Desition	Distance	Differential	1	<u></u>	<u> </u>
Sampling Position No.	from far wall	Pressure	Max Temp. °C	Max Temp. (Ts)	
INO.	(mm)	ΔP, kilo		K	(Vs) m/s
		Pascals			
1/1	2	0.094	280.0	553.2	14.5
1/2	73	0.096	281.0	554.2	14,7
1/3	160	0.103	281.0	554.2	15.2
1/4	287	0.099	282.0	555.2	14.9
1/5	633	0.075	282.0	555.2	12.9
1/6	760	0.093	283.0	556.2	14.5
1/7	847	0.078	281.0	554.2	13.2
1/8	918	0.070	279.0	552.2	12.5
2/1	2	0.106	278.0	551.2	15.3
2/2	73	0.127	278.0	551.2	16.8
2/3	160	0.139	278.0	551.2	17.6
2/4	287	0.103	279.0	552.2	15.1
2/5	633	0.089	279.0	552.2	14.1
2/6	760	0.093	278.0	551.2	14.4
2/7	847	0.075	278.0	551.2	12.9
2/8	918	0.057	278.0	551.2	11.2
<u> </u>					
<u> </u>					
<u> </u>			_		
	_				
		_			
Augreen			0707	550.0	
Average			279.7	552.9	14.4

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required):

kPa -5.4 mm 1013.47 hPa

Absolute pressure in stack (hPa):

Stack Analysis - Hazardous Substances Elemental Analysis Results

Date:

30-Jan-14

Client:

NCIA

AECOM's Project No:

60305580 Stack/Duct Description:

Kiln 1

	Particulate Metals Results	Gaseous Metals Results	Oixdi	sable Mercury I	Results
Metal	Front Half, Filter, Acetone Rinses and Acid Rinses (mg). Containers 1, 2 and 3	Back Half, Impingers + Acid Rinses (mg) Container 4	KO Impinger + Acid Rinses (mg) (5A)	KMnO₄/ H₂SO₄ + Rinses (mg) (5B)	Residue Rinse 8N HCI (mg) (lf Required) (5C)
Antimony	0.00015	0.0023		<u> Bandadean</u>	
Arsenic	0.0038	0.00085			
Beryllium	<0.0001	<0.0001			
Cadmium	0.014	0.0097			
Chromium	0.019	0.00035			
Cobalt	<0.0001	<0.0001			
Copper	0.015	<0.0006			
Lead	0.045	0.00035			
Magnesium	0.055	0.00053			
Manganese	0.007	< 0.0071			
Mercury	<0.0001	<0.0001	<0.0001	< 0.0005	<0.0005
Nickel	0.0018	0.00035			
Selenium	0.0012	0.015			
Thallium	0.0024	<0.0001			
Tin	0.0062	0.0022			
Vanadium	0.0004	<0.0001			
Zinc	1.4	0.0027			

Note: Where the blank has returned a less than value, half of this value was subtracted from the sample result as a blank correction

Stack Analysis - Hazardous Substances Elemental Analysis Results Continued

Date:

AECOM's Project No:

30-Jan-14

Client:

NCIA

60305580 Stack/Duct Description:

Kiln 1

Sample	Total Particulate Metals (mg)	Total Particulate Metals (mg/m³)	Total Gaseous Metals (mg)	Total Gaseous Metals (mg/m³)	Total Oxidisable Mercury (mg)	Total Oxidisable Mercury (mg/m³)	Total (mg)	Total (mg/m³)	Mass Emission Rate (mg/s)
Antimony	0.00015	0.00013	0.0023	0.002			0.002	0.0017	0.0088
Arsenic	0.0038	0.0033	0.00085	0.00074			0.005	0.0043	0.022
Beryllium	<0.0001	<0.000087	<0.0001	<0.000087			<0.000015	<0.000013	<0.000067
Cadmium	0.014	0.012	0.0097	0.0084			0.02	0.017	0.088
Chromium	0.019	0.017	0.00035	0.0003			0.02	0.017	0.088
Cobalt	<0.0001	<0.000087	<0.0001	<0.000087			<0.00015	<0.00013	<0.00067
Copper	0.015	0.013	<0.0006	< 0.00052			0.015	0.013	0.067
Lead	0.045	0.039	0.00035	0.0003			0.05	0.043	0.22
Magnesium	0.055	0.048	0.00053	0.00046			0.06	0.052	0.27
Manganese	0.007	0.0061	< 0.0071	<0.0062			0.007	0.0061	0.031
Mercury	<0.0001	<0.000087	<0.0001	<0.000087	<0.0005	<0.00043	<0.000025	<0.000022	<0.00011
Nickel	0.0018	0.0016	0.00035	0.0003		Managaran	0.002	0.0017	0.0088
Selenium	0.0012	0.001	0.015	0.013			0.02	0.017	0.088
Thailium	0.0024	0.0021	<0.0001	<0.000087			0.0024	0.0021	0.011
Tin	0.0062	0.0054	0.0022	0.0019	Basiconor		0.008	0.007	0.036
Vanadium	0.0004	0.00035	<0.0001	<0.000087			0.0004	0.00035	0.0018
Zinc	1.4	1.2	0.0027	0.0023			1	0.87	4.5
Total Hazardous Metals*	0.095	0.083	0.029	0.025	<0.0005	<0.00043	0.14	0.12	0.61
Total Metals	1.6	1.3	0.034	0.03			1.2	1.1	5.4

^{*} Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

ie for a blank value of <0.0005, 0.00025 was subtracted from the sample result.

* Total does not include Copper, Magnesium and Zinc as they are classed non-hazardous

STACK ANALYSIS - FINAL CALCULATIONS

Hazardous Substances (Metals)

(Calculations performed in accordance with relevant test method as defined on cover page)

30-Jan-14 Client: **NCIA**

AECOM's Project No: 60305580 Stack/Duct Description: Kiln 1

(A) Sample gas volume at standard conditions

Metered volume (MV₃): 1.2935 m³ Average barometric

pressure (P_{BARO}) 34.2 °C Average gas meter temp. (T_{M.2}): 1014 hPa

> 307.4 K Average pressure at meter

> > $(P_{M,2})$ 1014.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure): 1.1504 m³

(B) Metals concentration at standard conditions

Blank thimble No .: N/A Blank weight: Thimble No. used: N/A Metals Weight 0.00014 g

Final Metals Weight (Mp1): 0.00014 g

0.00012 g/m³ (0°C, dry gas, Metals Concentration (C1): $=M_{p1}/MV_4=$

1atm pressure)

;and C₂ = 0.12 mg/m³ (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 2.1 %

0.00069 g/m³ (0°C, dry gas, 1atm Therefore, C_c: $= C_a \times 12/CO_2\% =$

pressure, 12% CO₂)

;and C_{c1} = 0.69 mg/m³ (0°C, dry gas, 1atm

pressure, 12% CO₂)

O₂ Basis 7 %

Average O2%: 17.2 %

Therefore, C_b: =C_a x (21 - O_{2ref}%)/(21 - O_{2mea}%) 0.00044 g/m³ (0°C, dry gas, 1atm pressure,

> 7% O_2)

;and $C_{b1} =$ 0.44 mg/m3 (0°C, dry gas, 1atm pressure,

 O_2)

(C) Moisture content

Silica Gel Number: F99

12.2 g (from laboratory report) 29 mL (=grams) Volume of Water Vapour Condensed (V_{wc(std)}) = (recorded on 0.0387

Laboratory Form 108) Volume of Water Vapour Condensed (Vwsg(std)) = 0.0163

Therefore, B_{ws} =

(Vwc(std)+Vwsd(std)) $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

> B_{ws} = 4.56 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.27 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c): 1.27 kg/m³ (0°C, wet, 1 atm pressure)

1.30 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions = (ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

= 0.636 kg/m³ (stack conditions, wet)

14.31 m/s (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 14.26 m/s

(ii) Average of post-sampling velocities: 14.36 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs):

sampling velocities (Vs): N/A m/s (stack conditions, wet) (Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A = 10.79 \text{ m}^3/\text{s} \text{ (stack conditions)}$

Qstd = Qstack x Ps x (Tstd) x $(100 - B_w)$ (Pstd) (Ts) 100

Qstd = $5.2 \text{ m}^3/\text{s} (0^{\circ}\text{C}, \text{dry gas}, 1 \text{ atm pressure})$

(G) Mass Emission Rate

STACK ANALYSIS - FINAL CALCULATIONS

Sulfuric Acid Mist (H2SO4 as SO3)

(Calculations performed in accordance with relevant test method as defined on cover page)

30-Jan-14 Client: **NCIA**

AECOM's Project No: 60305580 Stack/Duct Description: Kiln 1

(A) Sample gas volume at standard conditions

1.0523 m³ Metered volume (MV₃):

pressure (PBARO) Average gas meter temp. $(T_{M,2})$: 29.2 °C 1014 hPa

> 302.4 K Average pressure at meter

 $(P_{M,2})$ 1014.00 hPa

Average barometric

Sample gas volume (MV₄); (0°C, dry gas,

0.9514 m³ 1 atm pressure):

(B) H2SO4 as SO3 concentration at standard conditions

Blank thimble No .: N/A Blank weight: <0.002 g Thimble No. used: N/A H2SO4 as SO3 Weight <0.002 g

Final H2SO4 as SO3 Weight (Mp1): <0.002 q

H2SO4 as SO3 Concentration (C1): <0.0021 g/m³ (0°C, dry gas, $=M_{p1}/MV_4=$

1atm pressure)

;and $C_2 =$ <2.1 mg/m3 (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO2%: 2.1 %

Therefore, C_c: $= C_a \times 12/CO_2\% =$ <0.012 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and C_{c1} = <12 mg/m³ (0°C, dry gas, 1atm

pressure, 12% CO₂)

O₂ Basis 7 %

Average O₂%: 17.2 %

Therefore, C_h: $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ <0.0077 g/m³ (0°C, dry gas, 1atm pressure.

> 7% O_2)

;and C_{b1} = <7.7 mg/m3 (0°C, dry gas, 1atm pressure, 7% O_2)

(C) Moisture content

Silica Gel Number: Z11

 $B_{ws} =$

V. = 18.7 g (from laboratory report) 0 mL (=grams) Volume of Water Vapour Condensed (V_{wc(std)}) = (recorded on 0.0000

Laboratory Form 108)

Volume of Water Vapour Condensed $(V_{wsg(std)}) =$ 0.0250

Therefore, $B_{ws} =$ $(V_{wc(std)} + V_{wsq(std)})$ $(V_{wc(std)}+V_{wsg(std)}+V_{m(std)})$

2.56 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

A=COM

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.27 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c): 1.25 kg/m³ (0°C, wet, 1 atm pressure) 1.30 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions = (ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

= 0.626 kg/m³ (stack conditions, wet)

14.31 m/s (stack conditions, wet)

N/A m/s (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 14.26 m/s

(ii) Average of post-sampling velocities: 14.36 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs):

(Note: (Vs) is from all individual data, not from (i)

(**Note**: (vs) is from all individual data, **not** from (i) and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = Vs x A = 10.79 m³/s (stack conditions)

Qstd = Qstack x \underline{Ps} X $\underline{(Tstd)}$ X $\underline{(100 - B_w)}$ (Pstd) (Ts) 100

Qstd = $5.3 \text{ m}^3/\text{s} (0^{\circ}\text{C}, \text{dry gas}, 1 \text{ atm pressure})$

(G) Mass Emission Rate

STACK ANALYSIS - FINAL CALCULATIONS

Sulfur Dioxide (SO2 as SO3)

(Calculations performed in accordance with relevant test method as defined on cover page)

30-Jan-14

Client: **NCIA**

AECOM's Project No:

60305580 Stack/Duct Description:

Kiln 1

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.0523 m³

Average barometric

Average gas meter temp. (T_{M.2}):

SO2 as SO3 Concentration (C1):

29.2 °C

pressure (PBARO)

1014 hPa

302.4 K

Average pressure at meter

 $(P_{M,2})$

1014.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure):

0.9514 m³

(B) SO2 as SO3 concentration at standard conditions

Blank thimble No.:

<0.010 g

Thimble No. used: Final SO2 as SO3 Weight (Mp1):

0

0.01500 g

Blank weight:

SO2 as SO3 Weight

0.02 g

0.016 g/m3 (0°C, dry gas,

1atm pressure)

;and $C_2 =$

 $=M_{p1}/MV_4=$

16 mg/m³ (0°C, dry gas,

1atm pressure)

CO₂ Basis

12 %

Average CO₂%:

2.1 %

Therefore, C_c:

 $= C_a \times 12/CO_2\% =$

0.091 g/m3 (0°C, dry gas, 1atm pressure,

12% CO₂)

;and C_{c1} =

91 mg/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

O₂ Basis

7 %

Average O2%:

17.2 %

Therefore, C_b:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

0.059 g/m³ (0°C, dry gas, 1atm pressure,

7%

;and C_{b1} =

59 mg/m³ (0°C, dry gas, 1atm pressure,

 O_2)

(C) Moisture content

Silica Gel Number:

Z11

V, =

18.7 g (from laboratory report)

 $V_w =$

0 mL (=grams)

Volume of Water Vapour Condensed (V_{wc(std)}) =

0.0000

(recorded on Laboratory Form 108)

Volume of Water Vapour Condensed (V_{wsq(std)}) =

0.0250

Therefore, B_{ws} =

(Vwc(stri)+Vwsq(stri)) $(V_{wo(std)}+V_{wsg(std)}+V_{m(std)})$

 $B_{ws} =$

2.56 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

AECOM

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.27 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.30 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions = (ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

0.626 kg/m³ (stack conditions, wet)

1.25 kg/m³ (0°C, wet, 1 atm pressure)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 14.26 m/s

(ii) Average of post-sampling velocities: 14.36 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and post-sampling

velocities (Vs):

(Note: (Vs) is from all individual data, not from (i) and

(ii) alone.)

14.31 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A = 10.79 \text{ m}^3/\text{s} \text{ (stack conditions)}$

Qstd = Qstack x \underline{Ps} x $\underline{(Tstd)}$ x $\underline{(100 - B_w)}$ (Pstd) (Ts) 100

Qstd = $5.3 \text{ m}^3/\text{s} (0^{\circ}\text{C, dry gas, 1 atm pressure})$

(G) Mass Emission Rate

EMISSION MONITORING RESULTS, KILN 1 NCIA

30-Jan-14
HAZARDOUS SUBSTANCES (METALS)
SULFURIC ACID MIST (H2SO4 AS SO3)
SULFUR DIOXIDE (SO2 AS SO3)

	·	
Sampling Conditions:		
Stack internal diameter at test location	980 mm	
Stack gas temperature (average)	272.7 °C	545.9 K
Stack pressure (average)	1014 hPa	
Stack gas velocity (average, stack conditions)	14 m/s	
Stack gas flowrate (stack conditions)	11 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	5.2 m ³ /s	
Hazardous Substances (Metals) Testing		
Test Period	8:30 =	10:08
Hazardous Substances (Metals) Mass	0.14 mg	
Gas Volume Sampled	1.15 m ³	
Hazardous Substances (Metals) Emission*1	0.12 mg/m ³	
Hazardous Substances (Metals) Mass Emission Rate*2	0.62 mg/s	
Regulatory Limit	1_mg/m ³	
Sulfuric Acid Mist (H2SO4 as SO3) Testing		
Test Period	8:30	10:08
Sulfuric Acid Mist (H2SO4 as SO3) Mass	<2 mg	
Gas Volume Sampled	0.951 m ³	
Sulfuric Acid Mist (H2SO4 as SO3) Emission*1	<2.1 mg/m ³	
Sulfuric Acid Mist (H2SO4 as SO3) Mass Emission Rate*2	<11 mg/s	
Regulatory Limit	100 mg/m ³	
Sulfur Dioxide (SO2 as SO3) Testing		
Test Period	8:30 -	10:08
Sulfur Dioxide (SO2 as SO3) Mass	15 mg	
Gas Volume Sampled	0.951 m ³	
Sulfur Dioxide (SO2 as SO3) Emission*1	16 mg/m ³	
Sulfur Dioxide (SO2 as SO3) Mass Emission Rate*2	84 mg/s	
Regulatory Limit	N/A	
Moisture Content (%)	4.6	
Gas Density (dry at 1 atmosphere)	1.30 kg/m ³	
Dry Molecular Weight	29 g/g-mole	
Notes: *1 Emission consentration at Standard conditions of 0°C 1 atm. do. do.		

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{atd} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

A=COM

NCIA

AECOM's Project Number:

60305580

Emission Source:

Kiln 1

Date Sampled:

29-Jan-14

ANALYTE(S)

METHOD

Fine Particulate (PM10)

NSW EPA OM - 5

Total Particulate

NSW EPA TM - 15

Total Fluoride

NSW EPA TM ~ 9

Observations made during testing period:

Sampling Performed By:

For Chris Burns

Peter Waddingham

STACK ANALYSIS - PRE-SAMPLING

Date:

29-Jan-14

Client:

NCIA

AECOM's Project No: Stack/Duct Description: Kiln 1

60305580

Test 1: Fine Particulate (PM10)

Test 2:

Total Particulate

Test 3:

Total Fluoride

		Measurement/Obse	nyations	
Stack Inte	rnal Dimensions:	Weasurement/Obse	T Valions	-
Diameter	980	mm	Cross Sectional Area	0.75 m^2
OR	Length	Width		0.70 111
Length/Wi			Minimum No. of	
Equivalent	t Diameter N/A	m m	sampling points=	12
				<u> </u>
	rom sampling plane to		Total No. of sampling	points = 16
nearest dis	sturbances:			PM2.5/10= 12
			No. of sampling trave	rses/ports
Upstream	• •		sampled =	2
No. Diame		A		PM2.5/10= 2
	ostream Disturbance:	Change in Diameter	No. of sampling point	
Downstrea No. Diame	• •		traverse/port =	8
		Dand		PM2.5/10= 6
Type of Do	own Stream Disturbance:	beng		
Docition of	f each sampling point, for	and travaria	Exclusion of any sam	
rusition of	reach sampling point, for	each traverse:	numbers - comments	:
			ļ	
	Α	В	PM10/2.5 A	PM2.5/10 B
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot distances
1	32	2	43	13
2	103	73	143	113
3	190	160	290	260
4	317	287	690	660
5	663	633	837	807
6	790	760	937	907
7	877	847		
8 9	948	918		
9 10	·		Observation to the terminate	
11			Check of total points	
12			minimum, (yes/no) - o	omments.
13				
14				
15				
16		·,		
17				
18				
19			General Comments:	· · · · · · · · · · · · · · · · · · ·
20			^	
	Ratito		the	7
Signed: 🖪	SUL XIV		Checked:	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

29-Jan-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Kiln 1

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Test 3:

Total Fluoride

Sampling time start:	9:34	Sampling port No.:	0	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	9:34	112	16.3	2.6
2	9:35	112	16.3	2.6
3	9:36	112	16.3	2.6
4	9:37	112	16.3	2.6
5	9:38	112	16.3	2.6
6	9:39	112	16.3	2.6
7	9:40	112	16.3	2.6
8	9:41	112	16.3	2.6
-	Averages:	112.0 ppm		

Moisture content (M3):

0.95

Moisture percentage (M2):

5.00 %

Measurements

CO:	0.0112 %,(dry)	N ₂ :	81.1 %,(dry)	
CO ₂ :	2.6 %,(dry)	O ₂ :	16.3 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0106 %,(wet)	N ₂ :	77.0 %,(wet)	
CO ₂ :	2.5 %,(wet)	O ₂ :	15.5 %,(wet)	
H ₂ O:	5.00 %(=M2)			
Therefore,	stack gas density (GD) =	1.27 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.30 kg/m ³	(0°C, dry, 1 atm pressure)	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date:

29-Jan-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Kiln 1

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Test 3:

Total Fluoride

Sampling time start:	11:20	Sampling port No.:	0			
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)		CO ₂ (%), (dry)	
1	11:20	98	16.0		2.8	
2	11:21	98	16.0		2.8	
3	11:22	98	16.0		2.8	
4	11:23	98	16.0		2.8	
5	11:24	98	16.0		2.8	
6	11:25	98	16.0		2.8	
7	11:26	98	16.0		2.8	_
8	11:27	98	16.0		2.8	
	Averages:	98.0 pp	m 16.0	%	2.8	%

Moisture content (M3):

0.96

Moisture percentage (M2):

3.52 %

Measurements

CO ₂ : 2.8 %,(dry) Gas Compositions converted to wet basis: CO: 0.0095 %,(wet) CO ₂ : 16.0 %,(dry) 78.3 %,(wet) CO ₂ : 78.3 %,(wet) CO ₂ : 15.4 %,(wet)	CO:	0.0098 %,(dry)	N ₂ :	81.2 %,(dry)	<u> </u>
Gas Compositions converted to wet basis: CO: 0.0095 %,(wet) N2: 78.3 %,(wet) CO2: 2.7 %,(wet) O2: 15.4 %,(wet)	CO ₂ :	2.8 %,(dry)	O ₂ :		
CO ₂ : 2.7 %,(wet) O ₂ : 15.4 %,(wet)	Gas Comp	positions converted to wet basis:	_		
	CO:	0.0095 %,(wet)	N ₂ :	78.3 %,(wet)	
0.50.0(/ 140)	CO ₂ :	2.7 %,(wet)	O ₂ :	15.4 %,(wet)	
T ₂ O: 3.52 %(=M2)	H₂O:	3.52 %(=M2)			
Therefore, stack gas density (GD) = 1.28 kg/m ³ (0°C, wet, 1 atm pressure)	Therefore,	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore, stack gas density (GD) = 1.30 kg/m ³ (0°C, dry, 1 atm pressure)	Therefore,	stack gas density (GD) =	1.30 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:

29-Jan-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Kiln 1

Test 2:Total Particulate Test 3:Total Fluoride

Time :	9:40	Barometric P	ressure :	1012	hPa
Page No. :	1 of 1	Pitot Correcti		0.84	111 G
Sampling Port No:	1 to 2	Stack Gas D		1.27	kg/m ³
Pitot Tube Type :	S	Clack Cas D	Crisity.	1.21	(0 °C, Wet, 1 Atm)
not rube type.		Max.		-	(O C, Wei, I Ailli)
	Distance	Differential			
Sampling Position	from far wall	Pressure	Max Temp. °C	Max Temp. (Ts)	
No.	(m m)	ΔP, kilo	IVIAX TEITIP. C	K	(Vs) m/s
	()	Pascals			
1/1	2	0.106	220.0	493.2	14.6
1/2	73	0.134	226.0	499.2	16.5
1/3	160	0.108	230.0	503.2	14.9
1/4	287	0.094	228.0	501.2	13.9
1/5	633	0.084	227.0	500.2	13.1
1/6	760	0.103	225.0	498.2	14.4
1/7	847	0.108	225.0	498.2	14.8
1/8	918	0.088	224.0	497.2	13.4
2/1	2	0.130	231.0	504.2	16.4
2/2	73	0.128	235.0	508.2	16.2
2/3	160	0.142	238.0	511.2	17.2
2/4	287	0.130	238.0	511.2	16.5
2/5	633	0.106	238.0	511.2	14.8
2/6	760	0.103	237.0	510.2	14.6
2/7	847	0.088	238.0	511.2	13.5
2/8	918	0.068	235.0	508.2	11.8
		_			
<u> </u>	<u> </u>	_			
		<u> </u>			
<u> </u>					
Average			320.0	E04.4	14.0
Average		<u> </u>	230.9	504.1	14.8

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) :

kPa -8.5 mm 1011.17 hPa

SAMPLING OF FINE PARTICULATE (PM10)

Date: NCIA Client:

29-Јап-14

AECOM's Project No:

60305580

Stack Description No.:

Kiln 1

Fine5

Sample Nozzle Area (An):

1.86 x 10⁻⁵m²

Sample Nozzle No.: Sampling Port No.:

1 to 2

Thimble No:

Page No:

1 of 1

T19

Blank thimble No:

N/A

Leak Check (Pre-Sampling) Meter start:

115.1218 Meter finish: 10:00 Time finish:

115.1218 Meter start: 10:01 Time start:

116.2078 Meter finish: 11:42 Time finish:

116.2078 11:43

Therefore, leakage rate = no leak

Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Leak Check (Post Sampling)

Repeat: Comments:

Time start:

Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1012 hPa (start);

L/min

1012 hPa (finish)

Meter start:

115.1220

Time start:

10:15

Meter correction factor (GMf):

1.0129

Stopwatch Time at Sampling Position 0:07:15 0:06:45 0:06:45 0:06:30 0:06:15	Distance from far wall (mm) 43 143 290 690 837	Isokinetic Flowrate (L/min) 13.3 13.3 13.3	Meter Inlet Temp. (°C) 34.0 37.0 39.0	Meter Outlet Temp. (°C) 26.0 26.0	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N) Yes
Sampling Position 0:07:15 0:06:45 0:06:45 0:06:30 0:06:15	from far wall (mm) 43 143 290 690	Flowrate (L/min) 13.3 13.3	Temp. (°C) 34.0 37.0	Temp. (°C)	Train Outlet	Attained (Y/N)
Position 0:07:15 0:06:45 0:06:45 0:06:30 0:06:15	(mm) 43 143 290 690	(L/min) 13.3 13.3 13.3	34.0 37.0	Temp. (°C)		(Y/N)
0:07:15 0:06:45 0:06:45 0:06:30 0:06:15	43 143 290 690	13.3 13.3 13.3	34.0 37.0	26.0	Tomp (O)	
0:06:45 0:06:45 0:06:30 0:06:15	143 290 690	13.3 13.3	37.0			
0:06:30 0:06:15	290 690	13.3				Yes
0:06:15			39.U	26.0		Yes
	837		40.0	27.0		Yes
0:06:15		13.3	43.0	29.0		Yes
	937	13.3	44.0	30.0		Yes
0:07:00	43	13.3	45.0	31.0		Yes
		13.3	47.0	31.0		Yes
		13.3	47.0	33.0		Yes
			48.0	34.0		Yes
			48.0	35.0		Yes
0:05:30	937	13.3	50.0	35.0		Yes
				Ĺ.		
				L		
_						
			43.5	30.3	no result	
	0:07:45 0:08:00 0:06:15 0:05:45 0:05:30	0:07:45 143 0:08:00 290 0:06:15 690 0:05:45 837 0:05:30 937	0:07:45	0:07:45	0:07:45	0:07:45

Total Condensate collected:

13 ml

Silica gel No(s) used:

Z13

STACK ANALYSIS SAMPLING OF TOTAL PARTICULATE

Date: 29-Jan-14

NCIA Client:

AECOM's Project No: Stack Description No.:

Kiln 1

60305580

Sample Nozzle No.: S3

Sample Nozzle Area (An):

2.83

Sampling Port No.:

1 to 2

Thimble No:

T23

Page No:

1 of 1

Blank thimble No:

Leak Check (Pre-Sampling) Time start:

Meter start:

98.7856 Meter finish: 10:05 Time finish: 98.7856 Meter start: 10:06 Time start:

Leak Check (Post Sampling)
Meter start: 99,9921 Meter finish:
Time start: 11:42 Time finish:

99.9921 11:43

x 10⁻⁵m²

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate = no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments: Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1012 hPa (start);

1012 hPa (finish)

Meter start:

98.7860

10:15

Meter correction factor (GMf):

Time start: 1.0159

	Stopwatch						
	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:05:00	32	14.8	28.0	26.0	· · · · ·	Yes
1/2	0:10:00	103	16.5	30.0	26.0		Yes
1/3	0:15:00	190	14.8	31.0	26.0		Yes
1/4	0:20:00	317	13.9	32.0	26.0		Yes
1/5	0:25:00	663	13.1	32.0	26.0		Yes
1/6	0:30:00	790	14.4	34.0	27.0		Yes
1/7	0:35:00	877	14.8	35.0	28.0		Yes
1/8	0:40:00	948	13.5	35.0	29.0		Yes
2/1	0:45:00	32	16.3	36.0	30.0		Yes
2/2	0:50:00	103	15.9	37.0	30.0		Yes
2/3	0:55:00	190	16.8	37.0	30.0		Yes
2/4	1:00:00	317	16.1	37.0	31.0		Yes
2/5	1:05:00	663	14.5	37.0	31.0		Yes
2/6	1:10:00	790	14.3	38.0	32.0		Yes
2/7	1:15:00	877	13.2	39.0	32.0		Yes
2/8	1:20:00	948	11.6	39.0	32.0		Yes
_							
-		_			<u> </u>		
-							
		-			-		
					 		
							
-							
_							_
		-					
Averages				34.8	28.9	no result	
Meter Finish:		99.9916		Time Finish:	20.8	11:36	

Meter Finish: Total Condensate collected: 99.9916 11 ml

Silica gel No(s) used:

P31

STACK ANALYSIS SAMPLING OF TOTAL FLUORIDE

Date: 29-Jan-14

NCIA Client:

AECOM's Project No: Stack Description No.:

Kiln 1

60305580

Sample Nozzle No.:

old61

Sampie Nozzle Area (An):

2.2

Sampling Port No.: Page No:

1 to 2 1 of 1

Thimble No:

N/A

Blank thimble No:

Leak Check (Pre-Sampling)

199.6120 Meter finish: 10:06 Time finish:

199.6120 Meter start: 10:07 Time start:

Leak Check (Post Sampling)
Meter start: 200.5251 Meter finish:
Time start: 11:45 Time finish:

200.5251 11:46

x 10⁻⁵m²

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments:

Meter start:

Time start:

Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1012 hPa (start);

1012 hPa (finish)

Meter start:

199.6122 Meter correction factor (GMf):

Time start:

10:15

0.9932

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet	Meter Outlet	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:05:00	32	11.2	35.0	25.0	remp(C)	Yes
1/2	0:10:00	103	12.6	36.0	25.0		Yes
1/3	0:15:00	190	11.2	37.0	25.0		Yes
1/4	0:20:00	317	10.5	38.0	26.0		Yes
1/5	0:25:00	663	9.9	39.0	27.0		Yes
1/6	0:30:00	790	11.0	41.0	28.0		Yes
1/7	0:35:00	877	11.3	41.0	28.0		Yes
1/8	0:40:00	948	10.2	41.0	28.0	-	Yes
							100
2/1	0:45:00	32	12.4	43.0	29.0		Yes
2/2	0:50:00	103	12.1	45.0	30.0		Yes
2/3	0:55:00	190	12.8	45.0	30.0		Yes
2/4	1:00:00	317	12.3	46.0	31.0		Yes
2/5	1:05:00	663	11.0	46.0	31.0		Yes
2/6	1:10:00	790	10.9	46.0	31.0		Yes
2/7	1:15:00	877	10.0	47.0	32.0		Yes
2/8	1:20:00	948	8.8	47.0	32.0		Yes
Averages				42.1	28.6	no result	

Meter Finish: Total Condensate collected: 200.5242 10 mJ Time Finish:

Silica gel No(s) used:

Z16

11:36

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:

29-Jan-14

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Kiln 1

Test 2:Total Particulate Test 3:Total Fluoride

Time :	11:40	Barometric P	ressure :	1012	hPa
Page No. :	1 of 1			0.84	
Sampling Port No:	1 to 2	Stack Gas Density:		1.28	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
		Max.			
Sampling Position	Distance	Differential		Max Temp. (Ts)	Corrected Velocity
No.	from far wall	Pressure	Max Temp. °C	K	(Vs) m/s
	(mm)	ΔP, kilo		,	((()))
414		Pascals			
1/1 1/2	2	0.099	219.0	492.2	14.0
1/3	73 160	0.117	220.0	493.2	15.2
1/4	287	0.099 0.104	223.0	496.2	14.1
1/5	633	0.104	224.0	497.2	14.4
1/6	760	0.093	225.0	498.2	13.7
1/7	847	0.107	226.0 228.0	499.2 501.2	14.1
1/8	918	0.107	230.0	503.2	14.7 15.1
	310	0.115	230.0	303.2	15.1
2/1	2	0.138	232.0	505.2	16.8
2/2	73	0.124	232.0	505.2	15.9
2/3	160	0.127	232.0	505.2	16.1
2/4	287	0.125	233.0	506.2	16.0
2/5	633	0.099	235.0	508.2	14.3
2/6	760	0.098	235.0	508.2	14.2
2/7	847	0.084	235.0	508.2	13.2
2/8	918	0.071	237.0	510.2	12.1
-					
_					
·			-		
	-				
Δνοτοσο			220.4	E00.0	44.0
Average	<u> </u>	<u> </u>	229.1	502.3	14.6

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa -7.5 mm 1011.26 hPa

AECOM

STACK ANALYSIS - PM10 CALCULATIONS

Date:	29-Jan-14	•	NCIA	
AECOM's Project No:	60305580	Stack/Duct L	Description: Kilr	11
1. Gas Analysis				
	%			
%CO₂	2.8			
%O₂	16.0			
%N ₂ +%CO	81.1			
Fraction Moisture Content, Bws	0.04	M ₃ =	0.96	
2. Molecular Weight of Stack Gas	(Dry Basis)			
Mol. Wt. of Stack Gas (drv)	29.07			
Mol. Wt. of Stack Gas (wet)	28.51			
3. Absolute Stack Pressure				
B	Pascals	In. Hg		
Barometric Pressure (Pbar)	101200	29.88		
Stack Static Pressure (Pg)	101126	29.85		
Absolute Stack Pressure		29.85		
4. Viscosity of Stack Gas				
	°C	°F		
Average Stack Temp.	226.8	440.3		
Average Meter Temperature:	36.9			
Stack Gas Viscosity		276.7		
5. Cyclone Flow Rate				
	ft³/min	m³/min	L/min	L/s
Cyclone Flow Rate	0.80	0.0282	28.18	0.47

6. Nozzle Velocity, Rmin and Rmax

Vozzle Number	Nozzie Diameter	Nozzle	Velocity	Rmin	Rmax	Vmin	Vmin	Vmax	Vmax
	(inches)	ft/sec	m/s	[-]	[-]	ft/sec	m/s	ft/sec	m/s
0	0.000	#DIV/0!	#DIV/0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
1	0.131	142.73	46.98	0.765	1.225	109.16	35.81	174.79	57.34
2_	0.159	96.39	31.73	0.735	1.244	70.83	23.24	119.89	39.33
3	0.165	90.04	29.64	0.727	1.248	65.48	21.48	112.40	36.88
4	0.000	#DIV/0!	#DIV/0	#DIV/0I	#DIV/0!	#DIV/0!	#D1V/0I	#DIV/0I	#DIV/0
5	0.191	66.61	21.92	0.680	1.275	45.31	14.87	84,91	27.86
6	0.214	53.16	17.50	0.622	1.303	33.04	10.84	69.27	22.73
7	0.000	#DIV/0!	#DIV/0	#DIV/0I	#DIV/0!	#D!V/0!	#DIV/0!	#DIV/0I	#DIV/0
8	0.272	33.04	10.88	#NUM!	1.398	16.52	5.42	46.21	15.16
9	0.311	25.21	8.30	#NUM!	1.484	12.60	4.14	37.40	12.27
10_	0.339	21.27	7.00	#NUM!	1.552	10.64	3.49	31.91	10.47
11	0.429	13.27	4.37	#NUM!	1.824	6.63	2.18	19.90	6.53
	**	Nozzle	Nozzte	Sample					
	Nozzle Diameter	Diameter	Area	Rate					
Selected Nozzle	(inches)	(m)	(m ²)	(L/min)					
5	0.191	0.005	0.000019	14.4					

STACK ANALYSIS - PM10 CALCULATIONS CONTINUED

29-Jan-14 Client: NCIA 60305580 Stack/Duct Description: Kiln 1 Date: AECOM's Project No:

7.Sampling Time Total Run Time 80 Number of points 12

Velocity Head (pitot) Pa	Vel Head in H20	Sqr Root	Dwell time mins
	0.10		7.0
113.80	0.46	0.68	7.0
114.78	0.46	0.68	7.0
122.63	0.49	0.70	7.3
99.08	0.40 0.36 0.34	0.63	6.5
00.00	0.30		6.2
90.25 85.35	0.36	0.60	
85.35	0.34	0.59	6.1
97.12	0.39	0.62	6.5
123.61	0.50	0.70	7.3
123.01		0.70	7.3
146.17	0.59	0.77	7.9
93.20	0.37	0.61	6.3
77.50	0.31	0.56	5.8
81.42			
D1.4Z	0.33	0.57	5.9
		1	
		7	
		+	
		<u> </u>	
		1	
		T	
		_	
		1	
	 		
		1	
		1	
		1	
		_	
			
		 	
		_	
		1	
		!	
	August		BA 01.
	Average	0.64	80.00

Total time	Full hours	Full	Seconds
min		minutes	
7.3	0	7	15
1.3			15
14.0	0	14	0
20.8	0	20	45
27.3 33.5	0	27	15
33.5	D	33	30
39.8	0	39	45
40.0	0		45
46.8		46 54 2	45 30 30
54.5 62.5	_0	54	30
62.5	1 .	2	30
68.8	. 1	8	45
68.8 74.5	1	8	30
90.0	1	20	0
80.0		-20	
		l	
		l	
			
<u></u>			
L			
L			
<u> </u>			
		—	
<u> </u>			
		ĺ	
\vdash			
 			
\vdash			
\vdash			
\vdash			
\vdash			-
\vdash			

Aerodynamic Cut Size ($u_{\rm cw}$) $_{\rm 274.8}$ PM $_{\rm 10}$ Flow rate at actual cyclone conditions (Q $_{\rm a}$) $_{\rm 0.0216}$

Actual D₅₀

10.3

AECOM

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

Date: 29-Jan-14 Client: NCIA

AECOM's Project No: 60305580 Stack/Duct Description: Kiln 1

(A) Sample gas volume at standard conditions

Metered volume (MV₃): 1.0992 m³ Average barometric

Average gas meter temp. (T_{M2}): 36.9 °C pressure (P_{BARO}) 1012 hPa

310.1 K Average pressure at meter

(P_{M,2}) 1012.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure): 0.9672 m³

(B) PM10 concentration at standard conditions

Blank thimble No.: N/A Blank weight: g
Thimble No. used: T19 PM10 Weight 0.0032 g

Final PM10 Weight (Mp1): 0.00320 g

PM10 Concentration (C1): $= M_{p1}/MV_4 = 0.0033 \text{ g/m}^3 \text{ (0°C, dry gas, }$

1atm pressure)

;and C₂ = 3.3 mg/m³ (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 2.7 %

Therefore, C_c : = $C_a \times 12/CO_2\% = 0.015 \text{ g/m}^3 (0^{\circ}\text{C, dry gas, 1atm})$

pressure, 12% CO₂)

;and $C_{c1} = 15 \text{ mg/m}^3 (0^{\circ}\text{C}, \text{dry gas, 1atm})$

pressure, 12% CO₂)

O₂ Basis 18 %

Average O₂%: 16.2 %

Therefore, C_b : = $C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 0.002 g/m³ (0°C, dry gas, 1atm pressure,

18% O₂)

18%

 O_2)

;and $C_{b1} = 2 \text{ mg/m}^3 (0^{\circ}\text{C, dry gas, 1atm pressure,})$

(C) Moisture content

Silica Gel Number: Z13

 V_v = 16.6 g (from laboratory report) V_w = 13 mL (=grams) Volume of Water Vapour Condensed ($V_{wc/std}$) = 0.0173 (recorded on

Volume of Water Vapour Condensed (V_{wso(std)}) = 0.0222 Laboratory Form 108)

Therefore, $B_{ws} = \frac{(V_{wc(std)} + V_{wsg(std)})}{(V_{wc(std)} + V_{wsg(std)})}$

 $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

B_{ws} = 3.92 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Fine Particulate (PM10)

(D) Gas Composition and Density (Re-calculation)

1.27 kg/m³ (from Laboratory Form 107) (i) Initial gas density for sampling:

(ii) Re-calculated gas density based on moisture 1.26 kg/m³ (0°C, wet, 1 atm pressure) content in (c):

1.30 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions (ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

0.684 kg/m³ (stack conditions, wet)

14.45 m/s (stack conditions, wet)

(E) Gas Velocities

14.50 m/s (i) Average of pre-sampling velocities:

(ii) Average of post-sampling velocities: 14.40 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs):

N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

10.90 m³/s (stack conditions) Qstack = Vs x A =

Ps x $(Tstd) \times (100 - B_w)$ Qstd = Qstack x (Pstd) (Ts)

5.7 m³/s (0°C, dry gas, 1 atm pressure) Qstd =

(G) Mass Emission Rate

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

29-Jan-14

Client: **NCIA**

AECOM's Project No:

60305580 Stack/Duct Description:

Kiln 1

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.2248 m³

Average barometric

Average gas meter temp. (T_{M.2}):

31.8 °C

pressure (PBARO)

1012 hPa

305.0 K

Average pressure at meter

 $(P_{M,2})$

1012.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure):

1.0957 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No.:

N/A

Blank weight: Total Particulate Weight 0.0137 g

Thimble No. used:

T23

0.01370 g

;and C₂ =

Final Total Particulate Weight (Mp1): Total Particulate Concentration (C1):

 $=M_{p1}/MV_4=$

0.013 g/m3 (0°C, dry gas, 1atm pressure)

12 %

CO₂ Basis Average CO₂%:

2.7 %

13 mg/m3 (0°C, dry gas, 1atm pressure)

 $= C_a \times 12/CO_2\% =$

0.058 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and C_{c1} ≡

58 mg/m³ (0°C, dry gas, 1atm

pressure, 12% CO₂)

O₂ Basis

18 %

Average O₂%:

Therefore, C_c:

Therefore, C_b:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

16.2 %

0.008 g/m³ (0°C, dry gas, 1atm pressure,

18% O_2)

;and C_{b1} =

8 mg/m³ (0°C, dry gas, 1atm pressure, 18% O_2)

(C) Moisture content

Silica Gel Number:

P31

V., =

17.1 g (from laboratory report)

 $V_w =$

11 mL (=grams) (recorded on

Laboratory Form 108)

Volume of Water Vapour Condensed (V_{wc(std)}) =

0.0147 0.0228

Volume of Water Vapour Condensed (V_{wsq(std)}) = Therefore, B_{ws} =

 $(V_{wc(std)}+V_{wsg(std)})$

 $(V_{wc(std)} + V_{wsq(std)} + V_{m(std)})$

B_{ws} =

3.31 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.27 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c): 1.26 kg/m3 (0°C, wet, 1 atm pressure) 1.30 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions = (ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

> 0.683 kg/m3 (stack conditions, wet) =

(E) Gas Velocities

(i) Average of pre-sampling velocities: 14.79 m/s

(ii) Average of post-sampling velocities: 14.62 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and post-14.70 m/s (stack conditions, wet) sampling velocities (Vs): N/A m/s (stack conditions, wet) (Note: (Vs) is from all individual data, not from (i)

and (ii) alone,)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = Vs x A =11.09 m³/s (stack conditions)

Qstd = Qstack x <u>Ps</u> x (Tstd) × (100 - B_w) (Pstd) (Ts)

Qstd = 5.8 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

STACK ANALYSIS - FINAL CALCULATIONS

Total Fluoride

(Calculations performed in accordance with relevant test method as defined on cover page)

Client: **NCIA** 29-Jan-14

Kiln 1 60305580 Stack/Duct Description: AECOM's Project No:

(A) Sample gas volume at standard conditions

Average barometric 0.9058 m³ Metered volume (MV₃):

pressure (PBARO) 1012 hPa 35.3 °C Average gas meter temp. (T_{M.2}):

Average pressure at meter 308.5 K

1012.00 hPa $(P_{M,2})$

Sample gas volume (MV₄); (0°C, dry gas,

0.8012 m³ 1 atm pressure):

(B) Total Fluoride concentration at standard conditions

<0.0001 g Blank weight: Blank thimble No.: N/A 0.0036 g Total Fluoride Weight N/A Thimble No. used:

Final Total Fluoride Weight (Mp1): 0.00355 g

0.0044 g/m3 (0°C, dry gas, $=M_{p1}/MV_4=$ Total Fluoride Concentration (C1): 1atm pressure)

> 4.4 mg/m³ (0°C, dry gas, ;and $C_2 =$ 1atm pressure)

CO2 Basis 12 %

2.7 % Average CO₂%:

0.02 g/m3 (0°C, dry gas, 1atm pressure, $= C_a \times 12/CO_2\% =$ Therefore, C_c: 12% CO₂)

20 mg/m3 (0°C, dry gas, 1atm ;and $C_{c1} =$ pressure, 12% CO₂)

7 % O₂ Basis

16.2 % Average O₂%:

0.013 g/m3 (0°C, dry gas, 1atm pressure, $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ Therefore, C_b:

7% O_2)

13 mg/m3 (0°C, dry gas, 1atm pressure, ;and C_{b1} = O_2)

(C) Moisture content

Z16 Silica Gel Number:

10 mL (=grams) V_w = 10.6 g (from laboratory report) V_v = (recorded on 0.0133 Laboratory Form 108)

Volume of Water Vapour Condensed (V_{wc(std)}) = 0.0142 Volume of Water Vapour Condensed (V_{wsg(std)}) =

(Vwr(strl)+Vwsg(strl)) Therefore, B_{ws} =

 $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

3.32 % B. =

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Total Fluoride

(D)	Gas	Composition	and	Density	(Re-calculation)
-----	-----	-------------	-----	---------	-----------------	---

(i) Initial gas density for sampling: 1.27 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c): 1.26 kg/m3 (0°C, wet, 1 atm pressure) 1.30 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions = (ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

0.683 kg/m3 (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 14.79 m/s

(ii) Average of post-sampling velocities: 14.62 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and post-sampling velocities (Vs):

14.70 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i) and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = Vs x A =11.09 m³/s (stack conditions)

Qstd = Qstack x <u>Ps</u> x (Tstd) x (100 - B_w) (Pstd) (Ts)

Ostd = 5.8 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

EMISSION MONITORING RESULTS, KILN 1 NCIA

29-Jan-14 FINE PARTICULATE (PM10) TOTAL PARTICULATE TOTAL FLUORIDE

ampling Conditions:	980 mm	
stack internal diameter at test location	229.6 °C	502.8 K
tack gas temperature (average)	1011 hPa	-
tack pressure (average)	15 m/s	
tack gas velocity (average, stack conditions)	11 m ³ /s	
tock gas flowrate (stack conditions)	5.8 m ³ /s	
Stack gas flowrate (0ºC, dry gas, 1 atm pressure)		
ine Particulate (PM10) Testing	10:15	11:36
est Period	3.2 mg	
Fine Particulate (PM10) Mass	0.967 m ³	
Ras Volume Sampled	2 mg/m ³	
-: Postigulato (PM10) Emission*1 at 18% O2	12 mg/s	
Fine Particulate (PM10) Mass Emission Rate*2 at 18% O2	N/A mg/m ³	
Regulatory Limit at 18% O2	N/A mg/m	
Total Particulate Testing	10:15	- 11:36
Test Period	13.7 mg	
Total Particulate Mass	1.1 m ³	
Gas Volume Sampled	8 mg/m ³	
Total Particulate Emission*1 at 18% O2	47 mg/s	
Total Particulate Mass Emission Rate*2 at 18% O2	20 mg/m ³	
Regulatory Limit at 18% O2		
Total Fluoride Testing	10:15	11:36
Test Period	3,55 mg	
Total Fluoride Mass	0.801 m ³	
Gas Volume Sampled	4.4 mg/m ³	
Total Fluoride Emission*1	26 mg/s	
Total Fluoride Mass Emission Rate*2	5 mg/m ³	
Regulatory Limit	3.3	
Moisture Content (%)	1.30 kg/m ³	
Gas Density (dry at 1 atmosphere)	29.1 g/g-mole	1
Dry Molecular Weight Standard conditions of 0°C, 1 atm, dry gas		

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

NCIA

AECOM's Project Number:

60305580

Emission Source:

Selection Line

Date Sampled:

29-Oct-13

ANALYTE(S)

METHOD

Fine Particulate (PM10)

NSW EPA OM - 5

Total Particulate

NSW EPA TM - 15

Observations made during testing period:

Sampling Performed By:

Chris Burns

Nic Baldwir

STACK ANALYSIS - PRE-SAMPLING

Date: 29-Oct-13 Client: NCIA

AECOM's Project No: 60305580

Stack/Duct Description: Selection Line Test 1: Fine Particulate (PM10)
Test 2: Total Particulate

		Management/Object		
Stook Into	rnal Dimensions:	Measurement/Obse	rvations	
Stack inter	mai Dimensions:			
Diameter OR	490 Length	mm Width	Cross Sectional Area	0.19 m ²
Length/Wi		Width	Minimum No. of	
Equivalent	• •	ma ma	Minimum No. of	•
Equivalent	Diameter N/A	mm	sampling points=	8
	rom sampling plane to		Total No. of sampling	points = 12
nearest dis	sturbances:			PM2.5/10= 12
			No. of sampling trave	rses/ports
Upstream			sampled =	2
No. Diame	eters = 4.1			PM2.5/10= 2
Type of Up	ostream Disturbance:	Change in Diameter	No. of sampling point	s on each
Downstrea	am (m) = 3	-	traverse/port =	6
No. Diame	eters = 6.1		,	PM2.5/10= 6
Type of Do	own Stream Disturbance:	Change in Diameter		
			Exclusion of any sam	olo point
Position of	each sampling point, for	each traverce:	numbers - comments:	
i osidon or	cach sampling point, to	each traverse.	mumbers - comments.	
	Α	В	PM10/2.5 A	PM2.5/10 B
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot distance:
1	51	21	51	21
2	95	65	95	65
3	158	128	158	128
4	332	302	332	302
5	395	365	395	365
6	439	409	439	409
7		100_	100	103
8		<u> </u>		
9				<u> </u>
10	-		Charles Adams and the	
11			Check of total points a	
12			minimum, (yes/no) - c	omments:
13				
14				
15				
16				
17				
18				
19			General Comments:	
20				
			Q	→
Signed: 🚜	Jack Comments		Checked: 41	
			SHOOKOU, CLEANING	,
			<u> </u>	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

29-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Selection Line

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Sampling time start:	12:55	Sampling port No.:	0	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	12:55	0	20.9	0.0
2	12:56	0	20.9	0.0
3	12:57	0	20.9	0.0
4	12:58	0	20.9	0.0
5	12:59	0	20.9	0.0
6	13:00	0	20.9	0.0
7	13:01	0	20.9	0.0
8	13:02	0	20.9	0.0
	Averages:	0.0 ppm		

Moisture content (M3):

0.98

Moisture percentage (M2):

1.60 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Com	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	77.8 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.6 %,(wet)	
H ₂ O:	1.60 %(=M2)			
Therefore	, stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date:

29-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Selection Line

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

		<u> </u>		
Sampling time start:	14:02	Sampling port No.:	0	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	14:02	0	20.9	0.0
2	14:03	0	20.9	0.0
3	14:04	0	20.9	0.0
4	14:05	0	20.9	0.0
5	14:06	0	20.9	0.0
6	14:07	0	20.9	0.0
7	14:08	0	20.9	0.0
8	14:09	0	20.9	0.0
	Averages:	0.0 ppn		

Moisture content (M3):

Moisture percentage (M2):

0.97 2.74 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	_
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	ositions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	76.9 %,(wet)	
CO₂:	0.0 %,(wet)	O ₂ :	20.3 %,(wet)	
H ₂ O:	2.74 %(=M2)			
Therefore,	stack gas density (GD) =	1.27 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:

29-Oct-13

Client:

NCIA

AECOM's Project No:

60305580 Selection Line

Stack/Duct Description:

Test 1:Fine Particulate (PM10) Test 2:Total Particulate

Barometric Pressure : Time: 13:10 1000 hPa Page No. : 1 of 1 Pitot Correction Factor: 0.84

li age ito	1 01 1	ILION COLLECT		0.04	
Sampling Port No:	1 to 2	Stack Gas D	ensitv:	1.28	kg/m ³
Pitot Tube Type :	s		--		(0 °C, Wet, 1 Atm)
r not rube rype.		14		· · · · · · · · · · · · · · · · · · ·	(U C, Wet, I Atm)
		Max.			
Sampling Position	Distance	Differential		Max Temp. (Ts)	Corrected Velocity
No.	from far wall	Pressure	Max Temp. °C		
INO.	(m m)	ΔP, kilo		K	(Vs) m/s
	` '	Pascals			
1/1	21	0.017	38.0	311.2	4.6
1/2	65				
1/3		0.015	38.0	311.2	4.3
	128	0.017	38.0	311.2	4.6
1/4	302	0.014	39.0	312.2	4.2
1/5	365	0.013	38.0	311.2	4.0
1/6	409	0.012	39.0	312.2	3.9
2/1	21	0.015	39.0	312.2	4.3
2/2	65	0.015	40.0	313.2	
2/3					4.3
	128	0.015	40.0	313.2	4.3
2/4	302	0.013	41.0	314.2	4.0
2/5	365	0.013	41.0	314.2	4.0
2/6	409	0.014	41.0	314.2	4.2
					112
	 -				
				<u></u>	
	!				
				·	
					-
i i		<u> </u>			
		-			
		_			
					
					
					
		· · · · · · · · · · · · · · · · · · ·			
			_		
					-
Average			39.3	312.5	4.2
	<u> </u>		03.0	312,5	4.2

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required): Absolute pressure in stack (hPa):

kPa -0.5 mm 999.95 hPa

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date: 29-Oct-13 Client:

NCIA

AECOM's Project No:

60305580

Stack Description No.:

Selection Line

fine5

Sample Nozzle Area (An):

1.73

Sample Nozzle No.: Sampling Port No.:

1 to 2

Thimble No:

Page No:

1 of 1

T119

Blank thimble No:

N/A

Leak Check (Pre-Sampling) Meter start: Time start:

63.3612 Meter finish: 13:09 Time finish:

Leak Check (Post Sampling) 63.3612 Meter start: 13:10 Time start:

64.1978 Meter finish: 14:18 Time finish:

64.1978 14:19

 $x 10^{-5} m^2$

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate ≃ no leak L/min

(>0.1 !/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat:

Repeat:

Comments:

Comments:

Sampling Record Table

Barometric Pressure:

1000 hPa (start);

63.3620

1000 hPa (finish)

Meter start:

Time start:

13:15

Meter correction factor (GMf) : 1.0159

	Charment						
	Stopwatch					to at	
Cli	Time at	Distance	Isokinetic	Meter Injet	Matar Outland	Impinger	Flowrate
Sampling Position No.	Sampling	from far wall	Flowrate			Train Outlet	Attained
	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)_
1/1 1/2	0:05:30	51	13.9	40.0	35.0		Yes
	0:05:00	95	13.9	41.0	35.0		Yes
1/3	0:05:30	158	13.9	43.0	35.0		Yes
1/4	0:05:00	332	13.9	45.0	36.0		Yes
1/5	0:04:45	395	13.9	45.0	36.0		Yes
1/6	0:04:30	439	13.9	46.0	37.0		Yes
0//							
2/1	0:05:00	51	13.9	47.0	37.0		Yes
2/2	0:05:00	95	13.9	48.0	38.0		Yes
2/3	0:05:15	158	13.9	48.0	38.0		Yes
2/4	0:04:45	332	13.9	48.0	38.0		Yes
2/5	0:04:45	395	13.9	48.0	38.0		Yes
2/6	0:05:00	439	13.9	48.0	38.0		Yes
							•
							_
							
					-		
					_		
-							
	-	-	_				
	-	-			<u> </u>		
_					ļ		
Augranas							
Averages leter Finish:				45.6	36.8	no result	

64.1972 0 **ml**

Silica gel No(s) used:

Z13

Total Condensate collected:

STACK ANALYSIS

SAMPLING OF TOTAL PARTICULATE

Date NCIA Client:

29-Oct-13

AECOM's Project No:

60305580

Stack Description No.:

Selection Line s18

Sample Nozzle Area (An):

x 10⁻⁵m²

Sample Nozzle No.: Sampling Port No.:

1 to 2

Thimble No:

4.47 T117

Page No:

1 of 1

Blank thimble No:

N/A

Leak Check (Pre-Sampling) Meter start: Time start:

282.6246 Meter finish: 13:10 Time finish:

282.6246 Meter start: 13:11 Time start:

283.2834 Meter finish: 14:19 Time finish:

283.2834 14:20

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate = no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Leak Check (Post Sampling)

Repeat: Comments: Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1000 hPa (start);

282.6260

1000 hPa (finish) 13:15

Meter start: Meter correction factor (GMf):

0.9981

Time start:

Stopwatch Time at Distance Isokinetic Impinger Flowrate Sampling Sampling from far wall Meter Inlet Meter Outlet Train Outlet Flowrate Attained (L/min) Position No Position (mm) Temp. (°C) Temp. (°C) Temp (°C) (Y/N) 0:05:00 1/1 51 11.9 41.0 36.0 Yes 95 1/2 0.10.00 11 1 41 N 36.0 Yes 1/3 0:15:00 158 11.9 42.0 37.0 Yes 332 1/4 0:20:00 10.8 43.0 37.0 Yes 1/5 0:25:00 395 10.3 44.0 40.0 Yes 1/6 0:30:00 439 10.1 45.0 40.0

Yes 2/1 0:35:00 51 46.0 41.0 Yes 11.1 2/2 0:40:00 95 11.1 47.0 42.0 Yes 2/3 0:45:00 158 11.1 47.0 42.0 Yes 2/4 332 0:50:00 10.3 49 0 42.0 Yes 2/5 0:55:00 395 10.3 50.0 42.0 Yes 439 50.0 2/6 1:00:00 10.8 42.0 Yes

Meter Finish: Total Condensate collected:

Averages

283,2826 10 ml

45.4 Time Finish:

Silica gel No(s) used:

39.8

P27

no result

14:16

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:

29-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Selection Line

Test 1:Fine Particulate (PM10)

Test 2:Total Particulate

Time	44.00	D (1 D		1000	
Time :	14:02	Barometric P		1000	hPa
Page No. :	1 of 1	Pitot Correction Factor :		0.84	2
Sampling Port No:	1 to 2	Stack Gas Density:		1.27	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
		Max.			
Sampling Position	Distance	Differential		Max Temp. (Ts)	Corrected Velocity
No.	from far wall	Pressure	Max Temp. °C	K	(Vs) m/s
140.	(mm)	∆P, kilo		K	((() 111/5
		Pascals			
1/1	21	0.016	39.0	312.2	4.5
1/2	65	0.015	39.0	312.2	4.3
1/3	128	0.015	39.0	312.2	4.3
1/4	302	0.015	40.0	313.2	4.4
1/5	365	0.014	40.0	313.2	4.2
1/6	409	0.013	40.0	313.2	4.0
2/1	21	0.016	40.0	313.2	4.5
2/2	65	0.015	40.0	313.2	4.4
2/3	128	0.015	40.0	313.2	4.4
2/4	302	0.015	40.0	313.2	4.4
2/5	365	0.014	40.0	313.2	4.2
2/6	409	0.013	40.0	313.2	4.0
				·	
		Ī			
	ii ii				
		<u> </u>			
				· -	
			-		
				-	
			-		
	-				
	-			 ·	
_					
-					
Average			39.8	313.0	4.3
,	<u></u>		00,0	010.0	+.0

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) :

kPa -0.5 mm 999.95 hPa

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

29-Oct-13

Client:

NCIA

AECOM's Project No:

60305580 Stack/Duct Description:

Selection Line

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

0.8485 m³

Average barometric

Average gas meter temp. (T_{M.2}):

41.2 °C

pressure (PBARO)

1000 hPa

314.4 K

Average pressure at meter $(P_{M,2})$

1000.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure):

0.7277 m³

(B) PM10 concentration at standard conditions

Blank thimble No .: Thimble No. used:

N/A T119 Blank weight: PM10 Weight

0.0005 g

Final PM10 Weight (Mp1):

0.00050 g

PM10 Concentration (C1):

 $=M_{p1}/MV_4=$

0.00069 g/m3 (0°C, dry gas,

1atm pressure)

;and C₂ =

0.69 mg/m3 (0°C, dry gas. 1atm pressure)

CO₂ Basis

12 %

Average CO₂%:

Therefore, C_c:

0.0 %

 $= C_a \times 12/CO_2\% =$

0.00069 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and C_{c1} =

0.69 mg/m³ (0°C, dry gas, 1atm pressure, 12% CO₂)

O₂ Basis

Average O₂%:

20.9 %

Therefore, C_b:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

0.097 g/m³ (0°C, dry gas, 1atm pressure,

 O_2)

;and C_{b1} =

97 mg/m³ (0°C, dry gas, 1atm pressure,

7% O_2)

(C) Moisture content

Silica Gel Number:

Z13

7.9 g (from laboratory report)

0 mL (=grams) (recorded on

Laboratory Form 108)

Volume of Water Vapour Condensed (Vwc(std)) =

0.0000

Volume of Water Vapour Condensed (V_{wsq(std)}) =

0.0105

Therefore, B_{ws} =

 $(V_{wc(std)} + V_{wsq(std)})$ $(V_{wc(std)}+V_{wsg(std)}+V_{m(std)})$

 $B_{ws} =$

1.43 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c):

1.28 kg/m³ (0°C, wet, 1 atm pressure)
1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions = (ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

= 1.104 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 4.23 m/s

(ii) Average of post-sampling velocities: 4.30 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and post-sampling velocities (Vs):

(Next (Vs)): (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i) and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A = 0.80 \text{ m}^3/\text{s} \text{ (stack conditions)}$

Qstd = Qstack x Ps x (Tstd) x $(100 - B_w)$ (Pstd) (Ts) 100

Qstd = $0.7 \text{ m}^3/\text{s} (0^{\circ}\text{C}, \text{dry gas}, 1 \text{ atm pressure})$

(G) Mass Emission Rate

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

29-Oct-13

Client:

NCIA

AECOM's Project No:

60305580 Stack/Duct Description:

Selection Line

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

0.6554 m³

Average barometric

Average gas meter temp. (T_{M.2}):

42.6 °C

pressure (PBARO)

1000 hPa

315.8 K

Average pressure at meter

 $(P_{M,2})$

1000.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure):

0.5596 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No .:

N/A

Blank weight:

Thimble No. used:

T117

Total Particulate Weight

0.0006 g

Final Total Particulate Weight (Mp1): Total Particulate Concentration (C1):

0.00060 g $=M_{p1}/MV_4=$

0.0011 g/m3 (0°C, dry gas,

1atm pressure)

;and $C_2 =$

1.1 mg/m³ (0°C, dry gas,

1atm pressure)

CO₂ Basis

12 %

Average CO2%:

Therefore, C.:

0.0 %

 $= C_a \times 12/CO_2\% =$

0.0011 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

1.1 mg/m³ (0°C, dry gas, 1atm

;and $C_{c1} =$

pressure, 12% CO₂)

O₂ Basis

7 %

Average O₂%:

20.9 %

Therefore, C_b:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

0.15 g/m³ (0°C, dry gas, 1atm pressure,

7% O_2)

;and C_{b1} =

150 mg/m³ (0°C, dry gas, 1atm pressure,

10 mL (=grams)

(recorded on

Laboratory Form 108)

7% O_2)

(C) Moisture content

Silica Gel Number:

P27

7.7 g (from laboratory report)

0.0133

Volume of Water Vapour Condensed (Vwc(std)) =

Volume of Water Vapour Condensed (V_{wsg(std)}) =

0.0103

Therefore, $B_{ws} =$

 $(V_{wc(std)} + V_{wsq(std)})$

 $(V_{wc(std)}+V_{wsg(std)}+V_{m(std)})$

 $B_{ws} =$

4.05 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Total Particulate

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c): 1.30 kg/m³ (0°C, wet, 1 atm pressure)

1.29 kg/m³ (0°C, dry, 1 atm pressure)

4.26 m/s (stack conditions, wet)

(iii) Gas density at stack conditions = (ii) $\times (273.2) \times (Ps)$ (273.2+Ts) (1013.25)

= 1.121 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 4.23 m/s

(ii) Average of post-sampling velocities: 4.30 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs):

ampling velocities (Vs):

N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i) and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A = 0.80 \text{ m}^3/\text{s} \text{ (stack conditions)}$

Qstd = Qstack x Ps x (Tstd) x $(100 - B_w)$ (Pstd) (Ts) 100

Qstd = 0.7 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

EMISSION MONITORING RESULTS, SELECTION LINE NCIA

29-Oct-13 FINE PARTICULATE (PM10) TOTAL PARTICULATE

Sampling Conditions:		
Stack internal diameter at test location	490 mm	
Stack gas temperature (average)	39.5 °C	312.7 K
Stack pressure (average)	1000 hPa	
Stack gas velocity (average, stack conditions)	4.3 m/s	
Stack gas flowrate (stack conditions)	0.8 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	0.67 m ³ /s	
Fine Particulate (PM10) Testing		
Test Period	13:15 -	14:16
Fine Particulate (PM10) Mass	0.5 mg	
Gas Volume Sampled	0.728 m ³	
Fine Particulate (PM10) Emission*1	0.69 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	0.47 mg/s	
Regulatory Limit	N/A	
Total Particulate Testing		· · · ·
Test Period	13:15 -	14:16
Total Particulate Mass	0.6 mg	
Gas Volume Sampled	0.56 m ³	
Total Particulate Emission*1	1.1 mg/m ³	
Total Particulate Mass Emission Rate*2	0.73 mg/s	
Regulatory Limit	20 mg/m ³	
Moisture Content (%)	4.0	· -
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	
Notes *1 Emission concentration at Standard conditions of 0°C 1 atm day and		

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

NCIA

AECOM's Project Number:

60305580

Emission Source:

Spray Dryer

Date Sampled:

29-Oct-13

ANALYTE(S)

METHOD

Fine Particulate (PM10)

NSW EPA OM - 5

Total Particulate

NSW EPA TM - 15

Observations made during testing period:

Sampling Performed By:

Chris Burns

Nic Baldwin

STACK ANALYSIS PRE-SAMPLING

Date: 29-Oct-13 Client: NCIA

AECOM's Project No: 60305580

Stack/Duct Description: Spray Dryer
Test 1: Fine Particulate (PM10)
Test 2: Total Particulate

		Measurement/Obse	n of ions	
Stack Inter	rnal Dimensions:	weasurement/Obse	rvations	
Clack line	mai biliterisions.			
Diameter	1385	ma ma	0	. = . 2
OR		Width	Cross Sectional Area	1.51 m ²
ıl	Length			
Length/Wid			Minimum No. of	
Equivalent	Diameter N/A	mm	sampling points=	12
D:				
	rom sampling plane to		Total No. of sampling	points = 16
nearest dis	sturbances:			PM2.5/10= 12
			No. of sampling trave	rses/ports
Upstream (sampled =	2
No. Diame			i	PM2.5/10= 2
	stream Disturbance:	Fan	No. of sampling point	s on each
Downstrea			traverse/port =	8
No. Diame	ters = 7.2			PM2.5/10= 6
Type of Do	wn Stream Disturbance:	Stack Exit		•
			Exclusion of any sam	nle noint
Position of	each sampling point, for	each traverse:	numbers - comments	
	Parity Sport of	and it divide.	manibers - comments	•
	٨	ь	D1440/0 5 4	51.00 -44.5 -
No.	Distance from wall	B S-type Pitot distances	PM10/2.5 A Distance from wall	PM2.5/10 B
1 1	46	16	61	S-Type Pitot distance
2	145	115		31
3	269	239	202	172
4	447	417	410	380
5	938		975	945
6	1116	908	1183	1153
		1086	1324	1294
7	1240	1210		
8	1339	1309		
9				
10			Check of total points	
11			minimum, (yes/no) - c	omments:
12				
13				
14				
15				
16				
17 [
18			_	
19			General Comments:	
20				
	V DII		A T	
Signed: 🊜	91/2		Checked:	
o.g.,			Checked	************
		<u></u>	<u> </u>	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

29-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Spray Dryer

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Sampling time start:	10:00	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	10:00	24	18.7	1.2
2	10:01	24	18.7	1.2
3	10:02	24	18.7	1.2
4	10:03	24	18.7	1.2
5	10:04	24	18.7	1.2
6	10:05	24	18.7	1.2
7	10:06	24	18.7	1.2
8	10:07	24	18.7	1,2
	Averages:	24.0 ppm	10 -	1.2 %

Moisture content (M3):

0.89

Moisture percentage (M2):

11.00 %

Measurements

CO:	0.0024 %,(dry)	N ₂ ;	80.1 %,(dry)
CO ₂ :	1.2 %,(dry)	O ₂ :	18.7 %,(dry)
Gas Com	positions converted to wet basis:		
CO:	0.0021 %,(wet)	N ₂ :	71.3 %,(wet)
CO ₂ :	1.1 %,(wet)	O ₂ :	16.6 %,(wet)
H₂O:	11.00 %(=M2)		
Therefore	, stack gas density (GD) =	1.24 kg/m ³	(0°C, wet, 1 atm pressure)
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date: 29-Oct-13 Client: NCIA

AECOM's Project No: 60305580 Stack/Duct Description: Spray Dryer

Test 1: Fine Particulate (PM10)
Test 2: Total Particulate

Sampling time start:	11:35	Sampling port No.:	1	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	11:35	25	18.7	1.2
2	11:36	25	18.7	1.2
3	11:37	25	18.7	1,2
4	11:38	25	18.7	1.2
5	11:39	25	18.7	1.2
6	11:40	25	18.7	1.2
7	11:41	25	18.7	1.2
8	11:42	25	18.7	1.2
	Averages:	25.0 ppm	18.7 %	

Moisture content (M3): Moisture percentage (M2): 0.91 9.35 %

Measurements

CO:	0.0025 %,(dry)	N ₂ :	80.1 %,(dry)	
CO ₂ :	1.2 %,(dry)	O ₂ :	18.7 %,(dry)	
Gas Com	positions converted to wet basis:			
CO:	0.0023 %,(wet)	N ₂ :	72.6 %,(wet)	-
CO ₂ :	1.1 %,(wet)	O ₂ :	17.0 %,(wet)	
H ₂ O:	9.35 %(=M2)			
Therefore	, stack gas density (GD) =	1.25 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:

29-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Spray Dryer

Test 2:Total Particulate

Time :	0:45				
Page No. :	9:45	Barometric P		1002	hPa
	1 of 1	Pitot Correction Factor :		0.84	2
Sampling Port No:	1 to 2	Stack Gas Density:		1.24	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
	- ·	Max.			
Sampling Position	Distance	Differential	_	Max Temp. (Ts)	Corrected Velocity
No.	from far wall	Pressure	Max Temp. ⁰C	K (15)	(Vs) m/s
ľ	(mm)	ΔP, kilo		, ,	(***) 11110
4/4	10	Pascals			
1/1	16	0.387	85.0	358.2	24.2
1/3	115	0.349	89.0	362.2	23.1
	239	0.389	90.0	363.2	24.4
1/4	417	0.331	90.0	363.2	22.5
1/6	908	0.134	89.0	362.2	14.3
1/7	1086	0.166	89.0	362.2	15.9
1/8	1210	0.159	89.0	362.2	15.6
1/0	1309	0.142	88.0	361.2	14.7
2/1	16	0.392	89.0	200.0	0.1.5
2/2	115		89.0	362.2	24.5
2/3	239	0.451 0.412		362.2	26.3
2/4	417	0.412	89.0	362.2	25.1
2/5	908	0.353	89.0	362.2	23.2
2/6	1086	0.235	89.0	362.2	19.0
2/7	1210	0.177	89.0	362.2	16.4
2/8	1309	0.177	89.0 88.0	362.2	16.4
210	1309	0.147	00.0	361.2	15.0
<u> </u>					
				 .	
					
	-				<u> </u>
			-		
		-			
ļ — —	_				
					
	-				
					
			 -		
		-	 		
			 		
· · · · · · · · · · · · · · · · · · ·			 		
					
	_				
-				··	
-			<u> </u>	<u> </u>	
-					
Average			88.8	362.0	30.0
			00.0	302.0	20.0

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) :

kPa -16.5 mm 1000.38 hPa

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date: 29-Oct-13 NCIA Client:

AECOM's Project No: 60305580

Stack Description No.:

Spray Dryer

Sample Nozzle Area (An):

x 10⁻⁵m²

Sample Nozzle No.: Sampling Port No.:

fine5 1 to 2

Thimble No:

1.73

Page No:

T106

Meter start:

Time start:

1 of 1

Blank thimble No:

N/A

Leak Check (Pre-Sampling)

62.5942 Meter finish: 10:29 Time finish:

Leak Check (Post Sampling) 62.5942 Meter start: 10:30 Time start:

63.3588 Meter finish: 12:05 Time finish:

63.3588 12:06

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments: Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1002 hPa (start);

62.5994

1002 hPa (finish)

Meter correction factor (GMf):

Time start: 1.0159

10:43

	Stopwatch						
	Time at	Distance	Isokinetic		l	Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:07:30	61	10.8	28.0	26.0		Yes
1/2	0:07:45	202	10.8	30.0	26.0		Yes
1/3	0:07:30	410	10.8	30.0	26.0		Yes
1/4	0:05:45	975	10.8	32.0	26.0		Yes
1/5	0:06:00	1183	10.8	32.0	27.0		Yes
1/6	0:05:00	1324	10.8	34.0	27.0		Yes
2/1	0:08:30	61	10.8	36.0	27.0		Yes
2/2	0:08:30	202	10.8	36.0	28.0		Yes
2/3	0:07:30	410	10.8	37.0	30.0		Yes
2/4	0:05:45	975	10.8	37.0	30.0		Yes
2/5	0:05:15	1183	10.8	37.0	31.0		Yes
2/6	0:05:15	1324	10.8	37.0	31.0		Yes
į							_
							_
		_					
							-
				-			
					_		
				· ·			
			_			1	
		-					
- 						 i	
					· 		
<u> </u>			+			· ·	
 			-				<u> </u>
 				-			———
 							
Averages				33.8	27.9	no result	
				33.0	21.8	no result	

Meter Finish: Total Condensate collected: 63.3578 40 ml Time Finish:

Silica gel No(s) used:

FA6

12:03

A=COM

STACK ANALYSIS

SAMPLING OF TOTAL PARTICULATE

29-Oct-13 Date:

NCIA Client:

AECOM's Project No:

60305580

Stack Description No.:

Spray Dryer

s2

Sample Nozzle Area (An):

x 10⁻⁵m² 1.26

Sample Nozzle No.: Sampling Port No.:

1 to 2

Thimble No:

Page No:

1 of 1

Blank thimble No:

T104

Leak Check (Pre-Sampling)

Leak Check (Post Sampling)
Meter start: 282.0228 Meter finish:

281.2658 Meter start:

10:29 Time start:

N/A

12:06 Time finish:

282.0228

Therefore, leakage rate = no leak

10:28 Time finish:

281.2658 Meter finish:

Umin

Therefore, leakage rate =

no leak

12:07

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments:

Meter start:

Time start:

Repeat: Comments:

Sampling Record Table

1002 hPa (start);

1002 hPa (finish) Time start:

Barometric Pressure: Meter start:

0.9981

10:43

Meter correction factor (GMf):

	Stopwatch						
	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
osition No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:05:00	46	13.9	28.0	28.0		Yes
1/2	0:10:00	145	13.1	30.0	28.0		Yes
1/3	0:15:00	269	13.8	32.0	28.0		Yes
1/4	0:20:00	447	12.7	32.0	30.0	_	Yes
1/5	0:25:00	938	8.1	34.0	30.0		Yes
1/6	0:30:00	1116	9.0	34.0	30.0		Yes
1/7	0:35:00	1240	8.8	34.0	32.0		Yes
1/8	0:40:00	1339	8.4	34.0	32.0		Yes
2/1	0:45:00	46	13.9	36.0	32.0		V
2/2	0:50:00	145	14.9	36.0	32.0		Yes
2/3	0:55:00	269	14.9	36.0	34.0		Yes Yes
2/4	1:00:00	447	13,2	38.0	34.0		Yes
2/5	1:05:00	938	10.8	38.0	34.0		Yes
2/6	1:10:00	1116	9.3	38.0	34.0		Yes
2/7	1:15:00	1240	9.3	38.0	34.0		Yes
2/8	1:20:00	1339	8.5	38.0	34.0		Yes
			<u> </u>		5 1.0		
-							
_							
-							
	-						
Averages				34.8	31.6	no result	
Meter Finish:		282.0220		Time Finish:	01.0	12:03	

Meter Finish: Total Condensate collected: 282.0220 46 ml

Silica gel No(s) used:

F24

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:

29-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Spray Dryer

Test 2:Total Particulate

Time :	11:50	Barometric P	ressure .	1002	hPa
Page No. :	1 of 1	Pitot Correction Factor :		0.84	III CL
Sampling Port No:	1 to 2			1.25	kg/m ³
		Stack Gas Density:		1.25	
Pitot Tube Type:	\$	11			(0 °C, Wet, 1 Atm)
	Distance	Max. Differential			
Sampling Position	from far wall	Pressure	Max Temp. °C	Max Temp. (Ts)	
No.	(mm)	ΔP, kilo	IMAX TEMP. C	K	(Vs) m/s
	(''''''	Pascals			1
1/1	16	0.384	87.0	360.2	24.1
1/2	115	0.369	88.0	361.2	23.6
1/3	239	0.394	89.0	362.2	24.5
1/4	417	0.350	89.0	362.2	23.1
1/5	908	0.138	90.0	363.2	14.5
1/6	1086	0.169	90.0	363.2	16.0
1/7	1210	0.161	90.0	363.2	15.7
1/8	1309	0.132	90.0	363.2	14.2
	1000		-		
2/1	16	0.404	89.0	362.2	24.8
2/2	115	0.444	89.0	362.2	26.0
2/3	239	0.424	89.0	362.2	25.4
2/4	417	0.364	90.0	363.2	23.6
2/5	908	0.246	90.0	363.2	19.4
2/6	1086	0.176	90.0	363.2	16.4
2/7	1210	0.181	90.0	363.2	16.6
2/8	1309	0.150	90.0	363.2	15.1
Average			89.4	362.6	20.2

Static Pressure (Dwyer) (Pa):

Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa -17 mm 1000.33 hPa

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

29-Oct-13

60305580 Stack/Duct Description: Spray Dryer AECOM's Project No:

(A) Sample gas volume at standard conditions

0.7705 m³ Average barometric Metered volume (MV₃):

pressure (PBARO) 30.9 °C Average gas meter temp. (T_{M.2}): 1002 hPa

Client:

Average pressure at meter 304.1 K

NCIA

1002.00 hPa $(P_{M,2})$

Sample gas volume (MV₄); (0°C, dry gas,

0.6845 m³ 1 atm pressure):

(B) PM10 concentration at standard conditions

Blank weight: Blank thimble No .: N/A 0.0043 g Thimble No. used: T106 PM10 Weight

0.00430 g Final PM10 Weight (Mp1):

0.0063 g/m3 (0°C, dry gas, $=M_{D1}/MV_4=$ PM10 Concentration (C1):

1atm pressure)

;and $C_2 =$ 6.3 mg/m³ (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 1.2 %

 0.063 g/m^3 (0°C, dry gas, 1atm $= C_a \times 12/CO_2\% =$ Therefore, C_c:

pressure, 12% CO₂)

63 mg/m3 (0°C, dry gas, 1atm ;and C_{c1} =

pressure, 12% CO₂)

O₂ Basis

Average O₂%: 18.7 %

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 0.038 g/m3 (0°C, dry gas, 1atm pressure, Therefore, C_n:

> 7% O_2)

;and C_{b1} = 38 mg/m³ (0°C, dry gas, 1atm pressure, O_2)

(C) Moisture content

Silica Gel Number: FA6

V., = 9 6 g (from laboratory report) $V_w =$ 40 mL (=grams)

(recorded on Volume of Water Vapour Condensed (V_{wc(std)}) = 0.0533 Laboratory Form 108)

Volume of Water Vapour Condensed (V_{wsg(std)}) = 0.0128

Therefore, $B_{ws} =$ $(V_{wc(std)} + V_{wso(std)})$

 $(V_{wc(std)}+V_{wsq(std)}+V_{m(std)})$

B_{ws} = 8.81 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

AECOM

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.24 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c):

1.22 kg/m³ (0°C, wet, 1 atm pressure)

1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions = $(ii) \times \underbrace{(273.2)}_{} \times \underbrace{(Ps)}_{}$ (273.2+Ts) (1013.25)

= 0.908 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 20.51 m/s

(ii) Average of post-sampling velocities: 20.36 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs): 20.43 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = 30.78 m³/s (stack conditions)

Qstd = Qstack x Ps x (Tstd) x $(100 - B_w)$ (Pstd) (Ts) 100

Qstd = $20.9 \text{ m}^3/\text{s} (0^{\circ}\text{C}, \text{dry gas}, 1 \text{ atm pressure})$

(G) Mass Emission Rate

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

Date

29-Oct-13

NCIA Client:

AECOM's Project No:

60305580 Stack/Duct Description:

Spray Dryer

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

0.7521 m³

Average barometric

Average gas meter temp. (T_{M,2}):

33.2 °C

pressure (PBARO)

1002 hPa

306.4 K

Average pressure at meter $(P_{M,2})$

1002.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure):

0.6632 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No .:

N/A

Blank weight:

Thimble No. used:

T104

0.00830 g

Total Particulate Weight

Final Total Particulate Weight (Mp1):

0.013 g/m3 (0°C, dry gas,

Total Particulate Concentration (C1):

 $=M_{p1}/MV_4=$

1atm pressure)

0 0083 g

;and C₂ =

13 mg/m³ (0°C, dry gas, 1atm pressure)

CO₂ Basis

12 %

Average CO₂%:

1.2 %

Therefore, C_c:

 $= C_a \times 12/CO_2\% =$

0.13 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and C_{c1} =

130 mg/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

O₂ Basis

7 %

Average O2%:

18.7 %

Therefore, Ch.

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

0.079 g/m3 (0°C, dry gas, 1atm pressure,

 O_2)

79 mg/m3 (0°C, dry gas, 1atm pressure, O_2)

;and C_{b1} =

7%

(C) Moisture content

Therefore, B_{ws} =

Silica Gel Number:

F24

V., =

8.6 g (from laboratory report)

46 mL (=grams) (recorded on

Volume of Water Vapour Condensed (Vwc(std)) =

0.0613 0.0115

Laboratory Form 108)

Volume of Water Vapour Condensed (Vwsg(std)) =

 $(V_{wc(std)}+V_{wsg(std)})$

 $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

 $B_{ws} =$

9.89 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED **Total Particulate**

A=COM

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.24 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c): 1.23 kg/m³ (0°C, wet, 1 atm pressure)

(iii) Gas density at stack conditions = (ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

0.916 kg/m3 (stack conditions, wet)

1.29 kg/m³ (0°C, dry, 1 atm pressure)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 20.04 m/s

(ii) Average of post-sampling velocities: 20.19 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and post-20.11 m/s (stack conditions, wet) sampling velocities (Vs): N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i) and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = Vs x A = 30.30 m³/s (stack conditions)

Qstd = Qstack x Ps x (Tstd) x (100 - B,,) (Pstd) (Ts) 100

Qstd = 20.3 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

EMISSION MONITORING RESULTS, SPRAY DRYER NCIA

29-Oct-13 FINE PARTICULATE (PM10) TOTAL PARTICULATE

ampling Conditions: Stack internal diameter at test location	1385 mm	362.3 K
Stack gas temperature (average)	89.1 °C	362.3 K
Stack pressure (average)	1000 hPa 20 m/s	
Stack gas velocity (average, stack conditions)	31 m ³ /s	
Stack gas flowrate (stack conditions)	21 m ³ /s	
Stack gas flowrate (0 ⁰ C, dry gas, 1 atm pressure)	21 m /s	
ine Particulate (PM10) Testing	10:43	12:03
Test Period	4.3 mg	
Fine Particulate (PM10) Mass	0.685 m ³	
Gas Volume Sampled	6.3 mg/m ³	
Fine Particulate (PM10) Emission*1	130 mg/s	
Fine Particulate (PM10) Mass Emission Rate ⁻²	N/A	
Regulatory Limit		<u> </u>
Total Particulate Testing	10:43	- 12:03
Test Period	8.3 mg	
Total Particulate Mass	0.663 m ³	
Gas Volume Sampled	13 mg/m ³	
Total Particulate Emission*1	260 mg/s	
Total Particulate Mass Emission Rate*2	20 mg/m ³	
Regulatory Limit	9.9	
Moisture Content (%)	1.29 kg/m ³	
Gas Density (dry at 1 atmosphere) Dry Molecular Weight	28.9 g/g-mole	<u></u>

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

NCIA

AECOM's Project Number:

60305580

Emission Source:

Pressing & Drying

Date Sampled:

30-Oct-13

ANALYTE(S)

METHOD

Fine Particulate (PM10)

NSW EPA OM - 5

Total Particulate

NSW EPA TM - 15

Observations made during testing period:

Sampling Performed By:

Colin Clarke

STACK ANALYSIS - PRE-SAMPLING

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description: Pressing & Drying

Test 1:

Fine Particulate (PM10)
Total Particulate

Test 2:

		Measurement/Obse	nyations	
Stack Inter	rnal Dimensions:	wicasarement/Obse	I VALIOTIS	
Diameter	1000	mm	Cross Sectional Area	0.79 m ²
OR	Length	Width	Cioss Sectional Alea	0.78 111
Length/Wi		WIGHT	Minimum No. of	
Equivalent		mm		12
Equivalent	Diameter 1974	min	sampling points=	
Distance fr	rom sampling plane to		l Total No. of sampling	nointe - 10
	sturbances:		Total No. of Sampling	points = 16 PM2.5/10= 12
liourest die	starbariocs.		No. of sampling trave	
Upstream	(m) = 4		sampled =	•
No. Diame			Sampleu =	DM2 = (4.0-
1	ostream Disturbance:	Fan	No of compliant - inte	PM2.5/10= 2
Downstrea		raii	No. of sampling point	
No. Diame			traverse/port =	8
		Charle Fuit	! 	PM2.5/10= 6
Type or Do	own Stream Disturbance:	Stack Exit		
D 141 6			Exclusion of any sam	
Position of	each sampling point, for	each traverse:	numbers - comments:	•
	A	B	PM10/2.5 A	PM2.5/10 B
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot distance
1	33	3	44	14
2	105	75	146	116
3	194	164	296	266
4	323	293	704	674
5	677	647	854	824
6	806	776	956	926
7	895	865		
8	967	937		
9				
10			Check of total points a	
11			minimum, (yes/no) - c	omments:
12				
13				
14				
15				
16				
17				
18				
19			General Comments:	
20				
	7-17		127	
Signed:			Checked:	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Pressing & Drying

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Sampling time start:	9:30	Sampling port No.:	0	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	9:30	0	20.9	0.0
2	9:31	0	20.9	0.0
3	9:32	0	20.9	0.0
4	9:33	0	20.9	0.0
5	9:34	0	20.9	0.0
6	9:35	0	20.9	0.0
7	9:36	0	20.9	0.0
8	9:37	0	20.9	0.0
	Averages:	0.0 ppr	m 20.9 9	% 0.0 %

Moisture content (M3):

0.97 3.50 %

Moisture percentage (M2):

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	ositions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	76.3 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.2 %,(wet)	
H ₂ O:	3.50 %(=M2)			
Therefore,	stack gas density (GD) =	1.27 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Pressing & Drying

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

	<u> </u>			
Sampling time start:	11:20	Sampling port No.:	0	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	11:20	0	20.9	0.0
2	11:21	0	20.9	0.0
3	11:22	Ö	20.9	0.0
4	11:23	0	20.9	0.0
5	11:24	0	20.9	0.0
6	11:25	0	20.9	0.0
7	11:26	0	20.9	0.0
8	11:27	0	20.9	0.0
	Averages:	0.0 ppi	m 20.9 %	

Moisture content (M3):

Moisture percentage (M2):

0.99 1.49 %

Measurements

0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
0.0 %,(dry)	O ₂ :		
sitions converted to wet bas			
0.0000 %,(wet)	N ₂ :	77.9 %,(wet)	
0.0 %,(wet)	O ₂ :	20.6 %,(wet)	
1.49 %(=M2)			
ack gas density (GD) =	l 1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore, stack gas density (GD) =		(0°C, dry, 1 atm pressure)	
	0.0 %,(dry) sitions converted to wet basis: 0.0000 %,(wet) 0.0 %,(wet) 1.49 %(=M2) tack gas density (GD) =	0.0 %,(dry) sitions converted to wet basis: 0.0000 %,(wet) 0.0 %,(wet) 1.49 %(=M2) tack gas density (GD) = 1.28 kg/m ³	0.0 %,(dry) sitions converted to wet basis: 0.0000 %,(wet) 0.0 %,(wet) 1.49 %(=M2) 1.28 kg/m³ (0°C, wet, 1 atm pressure)

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Pressing & Drying

Test 2:Total Particulate

Time :	0.20	Daniel D		4044	
Page No. :	9:30	Barometric Pressure :		1014	hPa
	1 of 1	Pitot Correction Factor :		0.84	9
Sampling Port No:	1 to 2	Stack Gas Density:		1.27	kg/m ³
Pitot Tube Type:	S			_	(0 °C, Wet, 1 Atm)
		Max.			
Sampling Position	Distance	Differential		Max Temp. (Ts)	Corrected Velocity
No.	from far wall	Pressure	Max Temp. °C	K	(Vs) m/s
	(mm)	∆P, kilo		K	(05)11115
		Pascals			
1/1	3	0.092	38.0	311.2	10.8
1/2	75	0.108	38.0	311.2	11.7
1/3	164	0.129	38.0	311.2	12.8
1/4	293	0.152	38.0	311.2	13.9
1/5	647	0.134	38.0	311.2	13.0
1/6	776	0.141	38.0	311.2	13.4
1/7	865	0.120	38.0	311.2	12.3
1/8	937	0.103	37.0	310.2	11.4
2/1	3	0.129	35.0	308.2	12.7
2/2	75	0.157	36.0	309.2	14.0
2/3	164	0.181	36.0	309.2	15.1
2/4	293	0.163	36.0	309.2	14.3
2/5	647	0.131	36.0	309.2	12.9
2/6	776	0.119	36.0	309.2	12.2
2/7	865	0.092	36.0	309.2	10.8
2/8	937	0.091	36.0	309.2	10.7
ļ					
ļ					
<u> </u>					
ļ					
<u> </u>					
Average		<u></u>	36.9	310.1	12.6

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) :

kPa -5.7 mm 1013.44 hPa

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack Description No.: Sample Nozzle No.:

Pressing & Drying

fine5

Sample Nozzle Area (An):

1.73 x 10⁻⁵m²

Sampling Port No.:

1 to 2

Thimble No:

Page No:

1 of 1

Blank thimbie No:

T110 N/A

Leak Check (Pre-Sampling) Meter start: Time start:

171.6028 Meter finish:

Leak Check (Post Sampling) 171.6028 Meter start: 9:52 Time start:

172.6626 Meter finish: 11:32 Time finish:

172.6626 11:33

Therefore, leakage rate = no leak

9:51 Time finish:

Therefore, leakage rate =

no leak

L/min

Umin

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments: Repeat: Comments:

Time start:

Sampling Record Table

Barometric Pressure:

Total Condensate collected:

1014 hPa (start); 171.6039

1014 hPa (finish)

Meter start: Meter correction factor (GMf):

0.9932

10:08

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate (L/min)	Meter Inlet Temp. (°C)	Meter Outlet Temp. (°C)	Impinger Train Outlet Temp (°C)	Flowrate Attained (Y/N)
1/1	0:05:30	44	12.6	28.0	18.0	remp(C)	Yes
1/2	0:06:00	146	12.6	26.0	18.0	-	Yes
1/3	0:06:30	296	12.6	27.0	19.0		Yes
1/4	0:07:00	704	12.6	28.0	20.0		Yes
1/5	0:06:45	854	12.6	28.0	20.0		Yes
1/6	0:06:45	956	12.6	28.0	20.0		Yes
- 7-		_					
2/1	0:06:30	44	12.6	29.0	20.0		Yes
2/2	0:07:15	146	12.6	29.0	20.0		Yes
2/3	0:07:45	296	12.6	30.0	20.0		Yes
2/4	0:07:15	704	12.6	31.0	21.0		Yes
2/5	0:06:30	854	12.6	31.0	21.0		Yes
2/6	0:06:15	956	12.6	31.0	21.0		Yes
			-			-	
				_	-		
		_			- · · · · ·	_	
_	-						
						-	
				_			
		_			_		
		-			-		
			<u> </u>				
							
							 -
						-	
Average							
Averages Meter Finish:		172,6600		28.8 Time Finish:	19.8	no result	

Silica gel No(s) used:

Z15

2 ml

STACK ANALYSIS

SAMPLING OF TOTAL PARTICULATE

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack Description No.: Sample Nozzle No.:

Pressing & Drying

s2

Sample Nozzle Area (An):

1.26

Sampling Port No.:

1 to 2

Thimble No:

T118

Page No:

1 of 1

Blank thimble No:

N/A

Leak Check (Pre-Sampling) Meter start: Time start:

283.3315 Meter finish:

Leak Check (Post Sampling) 283.3315 Meter start: 9:53 Time start:

284.1056 Meter finish: 11:33 Time finish:

284.1056 11:34

 $\times 10^{-5} \text{m}^2$

Therefore, leakage rate = no leak

9:52 Time finish:

L/min

Therefore, leakage rate = no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 //min. is unacceptable)

Repeat:

Comments:

Repeat:

Comments:

Sampling Record Table

Barometric Pressure:

1014 hPa (start);

1014 hPa (finish)

Meter start: 283.3363

Time start:

10:08

Meter correction factor (GMf):

0.9981

	Stopwatch				T	<u> </u>	
	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:05:00	33	7.6	20.0	20.0		Yes
1/2	0:10:00	105	8.2	20.0	20.0		Yes
1/3	0:15:00	194	9.0	21.0	20.0		Yes
1/4	0:20:00	323	9.8	21.0	21.0		Yes
1/5	0:25:00	677	9.1	21.0	21.0		Yes
1/6	0:30:00	806	9.4	22.0	21.0		Yes
1/7	0:35:00	895	8.6	23.0	22.0		Yes
1/8	0:40:00	967	0.8	24.0	22.0		Yes
2/1	0.45.00	- 00					
2/2	0:45:00 0:50:00	33	9.0	24.0	22.0		Yes
2/3		105	9.9	24.0	22.0		Yes
	0:55:00	194	10.7	24.0	22.0		Yes
2/4	1:00:00	323	10.1	24.0	22.0		Yes
2/5	1:05:00	677	9.1	24.0	22.0		Yes
2/6	1:10:00	806	8.6	24.0	22.0		Yes
2/7	1:15:00	895	7.6	24.0	22.0		Yes
2/8	1:20:00	967	7.6	24.0	22.0		Yes
<u> </u>							
ļ							
ļ							
ļ——							
├──							
 				<u> </u>			
	_	_					
	····						
							
- 	-						
 			_				
		-			-	_	
	-	- -					
	-						
 		-					
					-		
Averages				22.8	21.4	no result	
Meter Einigh:		204.4044		22.0	21.4	no result	

Meter Finish: Total Condensate collected: 284.1044

Time Finish:

Sílica gel No(s) used:

B66

11:30

3 ml

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Pressing & Drying

Test 2:Total Particulate

T:	44.00				
Time :	11:22	Barometric Pressure :		1014	hPa
Page No. :	1 of 1	Pitot Correction Factor :		0.84	2
Sampling Port No:	1 to 2	Stack Gas Density:		1.28	kg/m ³
Pitot Tube Type:	s				(0 °C, Wet, 1 Atm)
		Max.		_	
Sampling Position	Distance	Differential	i	Max Temp. (Ts)	Corrected Velocity
No.	from far wall	Pressure	Max Temp. °C	K	(Vs) m/s
	(mm)	ΔP, kilo			((((((((((((((((((((
4.4		Pascals			
1/1	3	0.104	38.0	311.2	11.4
1/3	75	0.113	38.0	311.2	11.9
	164	0.119	38.0	311.2	12.2
1/4	293	0.154	38.0	311.2	13.9
1/5	647	0.138	38.0	311.2	13.2
1/6	776	0.144	38.0	311.2	13.5
1/7	865	0.133	38.0	311.2	12.9
1/6	937	0.116	38.0	311.2	12.1
2/1	3	0.400	20.0	044.0	
2/2	75	0.129	38.0	311.2	12.7
2/3	164	0.160	38.0	311.2	14.2
2/4		0.170	38.0	311.2	14.6
2/5	293	0.161	38.0	311.2	14.2
2/6	647 776	0.152	38.0	311.2	13.8
2/7		0.131	38.0	311.2	12.8
2/8	865	0.101	38.0	311.2	11.3
2/0	937	0.112	38.0	311.2	11.8
			-		
					
					
 -	_				
				- -	
	-				
	_				
			—· —		
					
					<u> </u>
 -					
		-			
	-				
Average			38.0	311.2	12.9
/1701 LUGO			50.0	311.2	12.9

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) :

kPa -6 mm 1013.41 hPa

A=COM

STACK ANALYSIS - PM10 CALCULATIONS

30-Oct-13 60305580 Client: NCIA Stack/Duct Description: Pressing & Drying Date: AECOM's Project No:

1. Gas Analysis

% 0.0 %CO₂ %O₂ %N₂+%CO 20.9 79.1

Fraction Moisture Content, Bws 0.01 М₃= 0.99

2. Molecular Weight of Stack Gas (Dry Basis)

Mol. Wt. of Stack Gas (dry) Mol. Wt. of Stack Gas (wet)

3. Absolute Stack Pressure

Pascals 101400 101341 in. Hg 29.93 29.92 Barometric Pressure (Pbar) Stack Static Pressure (Pg) 29.92

Absolute Stack Pressure

4. Viscosity of Stack Gas °C 38.0 24.3 °F 100.4 Average Stack Temp.
Average Meter Temperature:
Stack Gas Viscosity 188.5

5. Cyclone Flow Rate

ft³/min 0.47 m³/mln 0.0167 L/min 16.70 L/s 0.28 Cyclone Flow Rate

6. Nozzle Velocity, Rmin and Rmax

Nozzle Number	Nozzle Diameter	Nozzle	Velocity	Rmin	Rmax	Vmin	Vmin	Vmax	Vmax
	(inches)	ft/sec	m/s	[-]	[-]	ft/sec	m/s	ft/sec	m/s
	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0I	#DIV/0!	#DfV/0t	#DIV/0!	#DIV/0I
1	0.131	84.57	27.84	0.759	1.228	64.22	21.07	103.88	34.08
2	0.159	57.40	18.89	0.725	1.250	41.61	13.65	71,74	23.54
3	0.165	52.85	17.39	0.714	1.256	37.73	12.38	66.38	21.78
4	0.000	#DIV/0I	#DIV/0!	#DIV/0!	#DIV/0I	#DIV/0!	#DIV/0L	#DIV/0!	#DIV/0
5	0.185	42.20	13.89	0.675	1.278	28.48	9.34	53.92	17.69
6	0.216	30.93	10.18	0.579	1,320	17.90	5.87	40.84	13.40
. 7	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0I	#DIV/0!	#DIV/0
8	0.267	20.22	6.66	#NUMI	1.415	10.11	3.32	28.62	9.39
9	0.306	15.48	5.10	#NUMI	1.505	7.74	2.54	23.22	7.62
10	0.339	12.60	4.15	#NUMI	1.596	6.30	2.07	18.91	6.20
11	0.431	7.79	2.56	#NUMI	1.902	3.69	1.28	11.68	3.83
		Nozzle	Nozzle	Sample					
	Nozzle Diameter	Diameter	Area	Rate					
Selected Nozzle	(inches)	(m)	(m ²)	(L/min)					
5	0.185	0.005	0.000017	13.6	1				

STACK ANALYSIS - PM10 CALCULATIONS CONTINUED

30-Oct-13 Client: NCIA 60305580 Stack/Duct Description: Pressing & Drying Date: AECOM's Project No:

7.Sampling Time Total Run Time 80 Number of points 12

Velocity Head (pitot)	Vel Head	Sqr Root	Dwell time
Pa	in H20		mins
105.95	0.43	0.65	5.7
112.82	0.45	0.67	5.9
167.75	0.67	0.82	7.2 6.9
154.02	0.62	0.79	6.9
138.32	0.56	0.75	6.6
144.21	0.58	0.76	6.7
129.49	0.52	0.72	6.3
159.90	0.64	0.80	7.0
	0.68	0.83	7.3
169.71			
160.88	0.65	0.80	7.1
152.06	0.61	0.78	6.9
131.45	0.53	0.73	6.4
		1	
		1	1
		1	
		 	-
		1	
			1
	1	1	
	1	1	
	+	+	-
	+	1	
	+	1	
		1	<u> </u>
	1		r
	+		
		+	
		1	
			1
		1	i .
_			
	1	T	-
	 		
L			
- · · · · · · · · · ·			
			_
	+	+	 -
	+	+	
		1	
	1	1	
	İ	1	
	1	1	
	+	+	
	+	+	
		+	
		 	
			ļ
			1
		1	T
	1	1	
	+	+	
	+	+	
	+	+	
		1	
			1
		1	
	1	1	1
	+	_	
	+	+	-
		1	
			1
	Average	0.76	80.00
	Square	0.57	1
		0.01	

Total time	Full hours	Full	Seconds
min		minutes	
5.5 11.5 18.0	0	5 11 18	30 30
11.5	0	11	30
18.0	0	18	0
25.0	0	25	0
25.0 31.8 38.5	0	25 31 38	45 30
38.5	0	38	30
I			
45.0 52.3	0	45	0
52.3	0	52	15 0
60.0	1	0	0
67.3 73.8	1	7	15
73.8	1	13	45
0.08	1	20	0
			\vdash
	 		\vdash
			\vdash
			\vdash
			\vdash
			\vdash
			-
			-
			\vdash
	_		
	L	i	\vdash
			\vdash
			$oxed{oxed}$
			oxdot
l			
·			

Aerodynamic Cut Size (v_{ove})
189.1

PM₁₀ Flow rate at actual cyclone conditions (Q_a)
0.0129

Actual D₅₀

10.3

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

30-Oct-13

Client:

60305580 Stack/Duct Description: Pressing & Drying AECOM's Project No:

(A) Sample gas volume at standard conditions

1.0489 m³ Average barometric Metered volume (MV₃):

pressure (PBARO) 24.3 °C 1014 hPa Average gas meter temp. (T_{M.2}):

> 297.5 K Average pressure at meter

> > 1014.00 hPa (P_{M2})

Sample gas volume (MV₄); (0°C, dry gas,

0.9639 m³ 1 atm pressure):

(B) PM10 concentration at standard conditions

Blank weight: Blank thimble No.: N/A 0.0027 g Thimble No. used: PM10 Weight T110

Final PM10 Weight (Mp1): 0.00270 g

0.0028 g/m³ (0°C, dry gas, $=M_{D1}/MV_4=$ PM10 Concentration (C1):

1atm pressure)

and C₂= 2.8 mg/m3 (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 0.0 %

0.0028 g/m3 (0°C, dry gas, 1atm $= C_a \times 12/CO_2\% =$ Therefore, C_c:

pressure, 12% CO₂)

2.8 mg/m³ (0°C, dry gas, 1atm ;and C_{c1} =

pressure, 12% CO₂)

O₂ Basis 7 %

Average O₂%: 20.9 %

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 0.39 g/m3 (0°C, dry gas, 1atm pressure, Therefore, C_b:

 O_2)

;and C_{b1} = 390 mg/m³ (0°C, dry gas, 1atm pressure, 7% O_2)

(C) Moisture content

Silica Gel Number: Z15

V, = 7.3 g (from laboratory report) 2 mL (=grams) (recorded on Volume of Water Vapour Condensed (Vwc(std)) = 0.0027

Laboratory Form 108) Volume of Water Vapour Condensed (V_{wsq(std)}) = 0.0097

Therefore, B_{ws} = $(V_{wc(std)}+V_{wsg(std)})$

 $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

B_{ws} = 1.27 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.27 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture

content in (c):

1.25 kg/m3 (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

1.099 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 13.07 m/s

(ii) Average of post-sampling velocities: 13.40 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and post-

sampling velocities (Vs):

13.23 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = Vs x A =10.39 m³/s (stack conditions)

<u>Ps</u> x (Tstd) × (100 - B_w) Qstd = Qstack x (Pstd) (Ts) 100

9.0 m³/s (0°C, dry gas, 1 atm pressure) Qstd =

(G) Mass Emission Rate

AECOM

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

Date: 30-Oct-13 Client: NCIA

AECOM's Project No: 60305580 Stack/Duct Description: Pressing & Drying

(A) Sample gas volume at standard conditions

Metered volume (MV₃): 0.7666 m³ Average barometric

Average gas meter temp. (T_{M.2}): 22.1 °C pressure (P_{BARO}) 1014 hPa

295.3 K Average pressure at meter

(P_{M,2}) 1014.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure): 0.7098 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No.: N/A Blank weight: g
Thimble No. used: T118 Total Particulate Weight 0.0085 g

Final Total Particulate Weight (Mp1): 0.00850 g

Total Particulate Concentration (C1): $=M_{p1}/MV_4=$ 0.012 g/m³ (0°C, dry gas,

1atm pressure)

;and C_2 = 12 mg/m³ (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 0.0 %

Therefore, C_0 : = $C_a \times 12/CO_2\% = 0.012 \text{ g/m}^3 (0^{\circ}\text{C}, \text{ dry gas, 1atm})$

pressure, 12% CO₂)

;and $C_{c1} = 12 \text{ mg/m}^3 (0^{\circ}\text{C}, \text{dry gas, 1atm})$

pressure, 12% CO₂)

O₂ Basis 7 %

Average O₂%: 20.9 %

Therefore, C_b : = $C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 1.7 g/m³ (0°C, dry gas, 1atm pressure,

 $7\% O_2$)

;and $C_{b1} = 1700 \text{ mg/m}^3 (0^{\circ}\text{C}, \text{ dry gas, 1atm pressure,})$

7% O₂)

(C) Moisture content

Silica Gel Number: B66

 V_v = 6.3 g (from laboratory report) V_w = 3 mL (=grams) Volume of Water Vapour Condensed ($V_{wc/std}$) = 0.0040 (recorded on

Volume of Water Vapour Condensed (V_{wsq(std)}) = 0.0084 Laboratory Form 108)

Therefore, $B_{ws} = \frac{(V_{wc(std)} + V_{wsg(std)})}{(V_{wc(std)} + V_{wsg(std)})}$

 $(V_{wc(std)}+V_{wsg(std)}+V_{m(std)})$

B_{ws} = 1.72 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Total Particulate

(D) Gas Composition and Density (Re-calculation)

1.27 kg/m³ (from Laboratory Form 107) (i) Initial gas density for sampling:

(ii) Re-calculated gas density based on moisture content in (c):

1.26 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

1.108 kg/m³ (stack conditions, wet)

(E) Gas Velocities

12.63 m/s (i) Average of pre-sampling velocities:

(ii) Average of post-sampling velocities: 12.91 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs):

12.77 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

10.03 m³/s (stack conditions) Qstack = Vs x A =

Ps x $(Tstd) \times (100 - B_w)$ Qstd = Qstack x (Pstd) (Ts)

8.7 m³/s (0°C, dry gas, 1 atm pressure) Qstd =

(G) Mass Emission Rate

EMISSION MONITORING RESULTS, PRESSING & DRYING NCIA

30-Oct-13 FINE PARTICULATE (PM10) TOTAL PARTICULATE

Sampling Conditions:		
Stack internal diameter at test location	1000 mm	
Stack gas temperature (average)	37.5 °C	310.7 K
Stack pressure (average)	1013 hPa	
Stack gas velocity (average, stack conditions)	13 m/s	
Stack gas flowrate (stack conditions)	10 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	8.8 m³/s	
Fine Particulate (PM10) Testing		
Test Period	10:08	· 11:30
Fine Particulate (PM10) Mass	2.7 mg	
Gas Volume Sampled	0.964 m ³	
Fine Particulate (PM10) Emission*1	2.8 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	25 mg/s	
Regulatory Limit	N/A	
Total Particulate Testing		
Test Period	10:08	- 11:30
Total Particulate Mass	8.5 mg	
Gas Volume Sampled	0.71 m ³	
Total Particulate Emission*1	12 mg/m ³	
Total Particulate Mass Emission Rate*2	100 mg/s	
Regulatory Limit	20 mg/m ³	
Moisture Content (%)	1.7	
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

A=COM

NCIA

AECOM's Project Number:

60305580

Emission Source:

Dryer 1

Date Sampled:

1-Nov-13

ANALYTE(S)

METHOD

Fine Particulate (PM10)

NSW EPA OM - 5

Total Particulate

NSW EPA TM - 15

Observations made during testing period:

Sampling Performed By:

Peter Waddingham

STACK ANALYSIS - PRE-SAMPLING

Date:

1-Nov-13 NCIA

Client: No

AECOM's Project No:

60305580

Stack/Duct Description: Dryer 1
Test 1: Fine Particulate (PM10)

Test 2: Total Particulate

		Measurement/Obse	rvations		
Stack Inte	ernal Dimensions:				
Diameter	400	mm	Conne Continuel Asse	0.40 2	
OR		Width	Cross Sectional Area	0.19 m ²	
Length/W	Length	vviatri	Minimum Na of		
	it Diameter N/A	MA ma	Minimum No. of	•	
Lquivaleii	N/A	mm	sampling points=	8	_
Distance f	from sampling plane to		Total No. of committee		
	isturbances:		Total No. of sampling	PM2.5/10=	8
nearest ur	isturbances.		No. of sampling trave		8
Upstream	(m) = 4			rses/ports	
No. Diame			sampled =	DMO 5/40	2
	pstream Disturbance:	Fan	No of compliant maint	PM2.5/10=	2
Downstrea		ı ail	No. of sampling point	s on each	4
No. Diame			traverse/port =	DM0 5/40-	4
	own Stream Disturbance:	Stook Evit		PM2.5/10=	4
Type of Di	own Otteam Disturbance.	SIGUN EXIL	Englands &		
Docition	familiar and familiar	1 (Exclusion of any sam		
Position o	f each sampling point, for	each traverse:	numbers - comments		
	٨		5144676.54		_
No.	A Distance from wall	B S-type Pitot distances	PM10/2.5 A	PM2.5/10	
1	33	3		S-Type Pitot dis	stances
2	123	93	33 123	3	
3	368			93	
4	457	338 427	368	338	
5	457	421	457	427	
6					
7					
8					
9			·		
10	ļ		Ob b f t - t - b - c - b - c	L	
11			Check of total points		
12			minimum, (yes/no) - c	omments:	
13					
14					
15 16		·			
16					
17					
18					
19			General Comments:		
20				00	
o	A T		(A-1)	4/-	
Signed: <	J.		Checked:		

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

1-Nov-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Dryer 1

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Sampling time start:	9:20	Sampling port No.	.:	0		· · · · · · · · · · · · · · · · · · ·
Measurement No.	Time sampled	CO (ppm). (dry)	$^{-}$ $^{-}$	O ₂ (%), (dry)		CO ₂ (%), (dry)
1	9:20	180		19.0		1.1
2	9:21	183		19.0		1.1
3	9:22	181		19.0		1.1
4	9:23	180	$\neg \uparrow$	19.0		1.1
5_	9:24	179		19.0		1.1
6	9:25	175	\neg	19.0		1.1
7	9:26	171		19.0		1.1
8	9:27	176		19.0		1.1
	Averages:	178.1	ppm	19.0	%	1.1

Moisture content (M3):

0.94

Moisture percentage (M2):

6.40 %

Measurements

CO:	0.0178 %,(dry)	N ₂ :	79.9 %,(dry)	
CO ₂ :	1.1 %,(dry)	O ₂ :	19.0 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0167 %,(wet)	N ₂ :	74.8 %,(wet)	
CO ₂ :	1.0 %,(wet)	O ₂ :	17.8 %,(wet)	
H ₂ O:	6.40 %(=M2)			
Therefore,	stack gas density (GD) =	1.26 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date: 1-Nov-13 Client: NCIA

AECOM's Project No: 60305580 Stack/Duct Description: Dryer 1

Test 1: Fine Particulate (PM10)

Test 2: Total Particulate

Sampling time start:	10:14	Sampling port No.:	0	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	10:14	175	19.0	1.1
2	10:15	175	19.0	1.1
3	10:16	173	19.0	1.1
4	10:17	172	19.0	1.1
5	10:18	176	19.0	1.1
6	10:19	175	19.0	1.1
7	10:20	178	19.0	1.1
8	10:21	179	19.0	1.1
	Averages:	175.4 ppm		1.1 %

Moisture content (M3): Moisture percentage (M2): 0.96 4.10 %

Measurements

CO:	0.0175 %,(dry)	N ₂ :	79.9 %,(dry)	
CO ₂ :	1.1 %,(dry)	O ₂ :	19.0 %,(dry)	
Gas Com	positions converted to wet basis:			
co:	0.0168 %,(wet)	N ₂ :	76.6 %,(wet)	
CO ₂ :	1.1 %,(wet)	O ₂ :	18.2 %,(wet)	
H₂O:	4.10 %(=M2)			
Therefore	stack gas density (GD) =	1.27 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:

1-Nov-13

Client:

NCIA

AECOM's Project No:

60305580 Dryer 1

Stack/Duct Description:

Test 1:Fine Particulate (PM10) Test 2:Total Particulate

Time:	9:29	Barometric P	ressure :	1019	hPa
Page No. :	1 of 1	Pitot Correction Factor :		0.84	
Sampling Port No:	1 to 2	Stack Gas Density:		1.26	kg/m ³
Pitot Tube Type :	S	Clack Gas Density.		1.20	(0 °C, Wet, 1 Atm)
Sampling Position No.	Distance from far wall (mm)	Max. Differential Pressure ∆P, kilo Pascals	Max Temp. °C	Max Temp. (Ts)	
1/1	3	0.053	96.0	369.2	8.9
1/2	93	0.065	104.0	377.2	10.0
1/3	338	0.070	105.0	378.2	10.4
1/4	427	0.064	94.0	367.2	9.8
2/1	3	0.058	105.0	378.2	9.4
2/2	93	0.068	107.0	380.2	10.2
2/3	338	0.064	108.0	381.2	10.0
2/4	427	0.052	99.0	372.2	8.9
			 -		
Average			102.3	375.5	9.7

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) :

kPa -10 mm

1018.02 hPa

AECOM

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date: 1-Nov-13

NCIA Client:

AECOM's Project No:

60305580

Stack Description No.:

Sample Nozzle No.:

fine5

Dryer 1

Sample Nozzle Area (An):

1.73 $\times 10^{-5} \text{m}^2$

Sampling Port No.:

1 to 2

Thimble No:

T137

Page No:

1 of 1

Blank thimble No:

N/A

Leak Check (Pre-Sampling) Meter start:

173.6984 Meter finish: 9:40 Time finish:

173.6984 Meter start: 9:41 Time start:

Leak Check (Post Sampling)
Meter start: 174.1680 Meter finish:
Time start: 10:40 Time finish:

174.1680 10:41

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

no leak L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments:

Time start:

Repeat: Comments:

Sampling Record Table

Meter correction factor (GMf):

Barometric Pressure:

1012 hPa (start);

1012 hPa (finish)

Meter start: 173.6985

Time start: 0.9932

9:52

	Stopwatch		
i	Time at	Distance	Isokinetic
Sampling	Sampling	from far wall	Flowrate
Position No.	Position	(mm)	(L/min)

	Stopwatch					1	
	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:04:45	33	11.8	30.0	21.0		Yes
1/2	0:05:15	123	11.8	31.0	21.0		Yes
1/3	0:05:15	368	11.8	31.0	21.0	i i	Yes
1/4	0:05:00	457	11.8	33.0	25.0		Yes
2/1	0:04:45	33	11,8	32.0	24.0		Yes
2/2	0:05:15	123	11.8	34.0	25.0		Yes
2/3	0:05:00	368	11.8	35.0	25.0		Yes
2/4	0:04:30	457	11.8	36.0	25.0		Yes
					-		
				<u> </u>	-	-	
						-	
					 		
		-					
	-				-		
Averages				32.8	23.4	no result	

Total Condensate collected:

5 ml

P22

Silica gel No(s) used:

AECOM

STACK ANALYSIS

SAMPLING OF TOTAL PARTICULATE

Date: 1-Nov-13

NCIA. Client:

AECOM's Project No: 60305580

Stack Description No.:

Dryer 1

Sample Nozzle Area (An):

x 10⁻⁵m²

Sample Nozzle No.: Sampling Port No.:

s3 1 to 2

Thimble No:

2.85 T138

Page No:

1 of 1

Blank thimble No:

N/A

Leak Check (Pre-Sampling) Meter start: Time start:

285.4578

284.9702 Meter finish: 9:41 Time finish:

9:42 Time start:

284.9702 Meter start:

Leak Check (Post Sampling)
Meter start: 285.4578 Meter finish:
Time start: 10:42 Time finish:

10:43

Therefore, leakage rate = no leak

Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments:

Repeat: . Comments:

Sampling Record Table

Barometric Pressure:

1012 hPa (start);

L/min

Time start:

1012 hPa (finish)

Meter start:

0.9981

9:52

284.9703 Meter correction factor (GMf):

	Stopwatch						
	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter inlet	Meter Outlet	Train Outlet	Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:05:00	33	11.6	24.0	22.0		Yes
1/2	0:10:00	123	12.7	26.0	23.0		Yes
1/3	0:15:00	368	13.2	27.0	24.0		Yes
1/4	0:20:00	457	12.8	28.0	25.0		Yes
							_
2/1	0:25:00	33	11.9	28.0	25.0		Yes
2/2	0:30:00	123	12.9	28.0	25.0		Yes
2/3	0:35:00	368	12.6	30.0	25.0		Yes
2/4	0:40:00	457	11.5	30.0	26.0		Yes
	_						
	·						
					_		
			_				
	<u>.</u>						
		_					
_							
-							
	-		_				
			_				
					 -		
		 					
Averages				27.6	24.4		
Meter Finish:		285.4500		Z7.6 Time Finish:	24.4	no result 10:32	

Total Condensate collected:

285.4500 5 ml

Silica gel No(s) used:

P6

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date: 1-Nov-13

Client: NCIA

AECOM's Project No: 60305580 Stack/Duct Description: Dryer 1

Test 1:Fine Particulate (PM10) Test 2:Total Particulate

Time :	10:22	Barometric P	ressure :	1019	hPa
Page No. :	1 of 1	Pitot Correcti		0.84	111 G
Sampling Port No:	1 to 2	Stack Gas D		1.27	kg/m ³
Pitot Tube Type :	S	Clack Cas D	Cildity.	1.21	(0 °C, Wet, 1 Atm)
Filot Tube Type.		Max.	T		(U C, Wet, I Aun)
Sampling Position No.	Distance from far wall (mm)	Differential	Max Temp. ^o C	Max Temp. (Ts) K	Corrected Velocity (Vs) m/s
1/1	3	0.049	98.0	371.2	8.6
1/2	93	0.058	99.0	372.2	9.3
1/3	338	0.066	104.0	377.2	10.0
1/4	427	0.061	100.0	373.2	9.6
2/1	3	0.059	101.0	374.2	9.4
2/2	93	0.069	105.0	378.2	10.2
2/3	338	0.067	106.0	379.2	10.1
2/4	427	0.056	105.0	378.2	9.2
Average			102.3	375.5	9.6

Static Pressure (Dwyer) (Pa): kPa
Static Pressure (U-tube, if required): -10 mm
Absolute pressure in stack (hPa): 1018.02 hPa

AECOM

STACK ANALYSIS - PM10 CALCULATIONS

Date: AECOM's Project No:	1-Nov-13 60305580	Client: Stack/Duct E	NCIA Description:	Dryer 1
1. Gas Analysis				
	%			
%CO₂	1.1			
%O₂	19.0			
%N₂+%CO	79.9			
Fraction Moisture Content, Bws	0.04	Ma=	0.96	
2. Molecular Weight of Stack Gas	(Dry Basis)			
Mol. Wt. of Stack Gas (dry)	28,94			
Mol. Wt. of Stack Gas (wet)	28.24			
3. Absolute Stack Pressure				
_	Pascals	in. Hg		
Barometric Pressure (Pbar)	101900	30.08		
Stack Static Pressure (Pg)	101802	30.05		
Absolute Stack Pressure		30.05		
4. Viscosity of Stack Gas				
	°C	٩۴		
Average Stack Temp.	102.3	216.1		
Average Meter Temperature:	28.1			
Stack Gas Viscosity		216.0		
5. Cyclone Flow Rate	_			
	ft³/min	m³/min	L/min	L/s
Cyclone Flow Rate	0.57	0.0202	20.24	0.34

6. Nozzie Velocity, Rmin and Rmax

	T								
Nozzle Number	Nozzle Diameter		Velocity	Rmin	Rmax	Vmin	Vmin	Vmax	Vmax
	(inches)	ft/sec	m/s	[-]	[-]	ft/sec	m/s	ft/sec	m/s
0	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0I	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
1	0.131	102.49	33.74	0.762	1.227	78.06	25.61	125.73	41.25
2	0.159	69.56	22.90	0.729	1.247	50.73	16.64	86.75	28.46
3	0.165	64.04	21.08	0.719	1.253	46.06	15.11	80.26	26.33
4	0.000	#DIV/0!	#DIV/0!	#DIV/0]	#DIV/QI	#DIV/0!	#DIV/0!	#DIV/0I	#DIV/0!
5	0,185	51.14	16.83	0.683	1.274	34.91	11.45	65.13	21.37
6	0.216	37,48	12.34	0.595	1.314	22.29	7.31	49.26	16.16
7	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0I	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
. 8	0.267	24.50	8.07	#NUM!	1.405	12.25	4.02	34.42	11.29
9	0.306	18.76	6.18	#NUM!	1.491	9.38	3.08	27.97	9.18
10	0.339	15.28	5.03	#NUM!	1.578	7.64	2.51	22.91	7.52
11	0.431	9.44	3.11	#NUM!	1.873	4.72	1.55	14.16	4.65
		Nozzle	Nozzle	Sample					
	Nozzle Diameter	Diameter	Area	Rate					
Selected Nozzle	(inches)	(m)	(m ²)	(L/min)					
5	0.495	0.006	0.000017	19.1	l				

STACK ANALYSIS - PM10 CALCULATIONS CONTINUED

Date: AECOM's Project No:

1-Nov-13 Client: NCIA 60305580 Stack/Duct Description: Dryer 1

7.Sampling Time Total Run Time 40 Number of points

8

Velocity Head (pitot) Pa	Vel Head in H20	Sqr Root	Dwell time mins
49.05	0.20	0.44	4.5
49.00	0.20	0.44	4.5
57.88	0.23	0.48	4.9
57.88 65.73	0.26	0.48	5.2
60.82	0.23 0.26 0.24	0.49	4.9 5.2 5.0
00.02	0.27	0.70	5.0
58.86	0.24	0.49	4.9
68.67	0.28	0.52	5.3
	0.27	0.52	5.3
66.71			2.3
55.92	0.22	0.47	4.8
	+	-	
	+		
		1	
		ļ	l
		!	
	+		
	+		
			
	<u> </u>		<u> </u>
	1		
	+		-
	+		
	+		
			
	· · · · · · · · · · · · · · · · · · ·		
	i		
	+		
		ļ	
	1		
	1		
	1	1	
	<u> </u>		
		1	
	+		
	+		
	+	-	——
		I	_
	Average	0.49	40.00

Total time	Full hours	Full	Seconds
min		minutes	
min 4.8 10.0 15.3 20.3	0	minutes 4 10 15 20	45
10.0	0	10	0 15
15.3	0	15	15
20.3	0	20	15
		l	
25.0 30.3 35.3 39.8	0	25 30 35 39	0
30.3	0	30	15 15
35.3	0	35	15
39.8	0	39	45
i			
		-	
			
		<u> </u>	
			
			
		_	

Aerodynamic Cut Size ($u_{\rm ew}$) 218.9 PM_{to} Flow rate at actual cyclone conditions (${\bf Q_a}$) 0.0137

11.3

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

1-Nov-13

Client: **NCIA**

AECOM's Project No: 60305580 Stack/Duct Description: Dryer 1

(A) Sample gas volume at standard conditions

0.4565 m³ Metered volume (MV₃): Average barometric

pressure (PBARO) Average gas meter temp. (T_{M,2}): 28.1 °C 1012 hPa

> 301.3 K Average pressure at meter

 $(P_{M,2})$ 1012.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

0.4134 m³ 1 atm pressure):

(B) PM10 concentration at standard conditions

Blank thimble No .: N/A Blank weight: Thimble No. used: T137 PM10 Weight 0.0004 g

Final PM10 Weight (Mp1): 0.00040 q

PM10 Concentration (C1): 0.00097 g/m3 (0°C, dry gas, $=M_{p1}/MV_4=$

1atm pressure)

;and $C_2 =$ 0.97 mg/m3 (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 1.1 %

0.011 g/m3 (0°C, dry gas, 1atm Therefore, C_c: $= C_a \times 12/CO_2\% =$

pressure, 12% CO₂)

;and C_{c1} = 11 mg/m³ (0°C, dry gas, 1atm

7%

 O_2)

pressure, 12% CO₂)

O₂ Basis 7 %

Average O₂%: 19.0 %

Therefore, Ch: $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 0.0068 g/m3 (0°C, dry gas, 1atm pressure,

7% O_2) ;and C_{b1} = 6.8 mg/m3 (0°C, dry gas, 1atm pressure,

(C) Moisture content

Silica Gel Number: P22

V_v = 8.9 g (from laboratory report) V_w = 5 mL (=grams) Volume of Water Vapour Condensed (Vwc(std)) = (recorded on 0.0067

Laboratory Form 108) Volume of Water Vapour Condensed (V_{wsg(std)}) = 0.0119

Therefore, B_{ws} =

 $(V_{wc(std)} + V_{wsg(std)})$

 $(V_{wc(std)} + V_{wsq(std)} + V_{m(std)})$

 $B_{ws} =$ 4.29 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

A=COM

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.26 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c):

1.24 kg/m³ (0°C, wet, 1 atm pressure)

1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions = (ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

= 0.906 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 9.70 m/s

(ii) Average of post-sampling velocities: 9.55 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs): 9.63 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i) and (ii) alone

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A = 1.82 \text{ m}^3/\text{s} \text{ (stack conditions)}$

Qstd = Qstack x \underline{Ps} x $\underline{(Tstd)}$ x $\underline{(100 - B_w)}$ (Pstd) (Ts) 100

Qstd = $1.3 \text{ m}^3/\text{s} (0^{\circ}\text{C}, \text{dry gas}, 1 \text{ atm pressure})$

(G) Mass Emission Rate

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

1-Nov-13 Client: **NCIA**

AECOM's Project No: 60305580 Stack/Duct Description: Drver 1

(A) Sample gas volume at standard conditions

Metered volume (MV₃): 0.4788 m³ Average barometric

pressure (PBARO) Average gas meter temp. (T_{M.2}): 26.0 °C 1012 hPa

> Average pressure at meter 299.2 K

 $(P_{M,2})$ 1012.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure): 0.4367 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No.: N/A Blank weight: Thimble No. used: T138 Total Particulate Weight 0.001 g

0.00100 g Final Total Particulate Weight (Mp1):

0.0023 g/m³ (0°C, dry gas, Total Particulate Concentration (C1): $=M_{D1}/MV_4=$

1atm pressure)

;and $C_2 =$ 2.3 mg/m³ (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 11%

0.025 g/m3 (0°C, dry gas, 1atm Therefore, C_c: $= C_a \times 12/CO_2\% =$

pressure, 12% CO₂)

25 mg/m3 (0°C, dry gas, 1atm ;and C_{c1} =

pressure, 12% CO₂)

O₂ Basis

Average O₂%: 19.0 %

Therefore, C_b: $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 0.016 g/m³ (0°C, dry gas, 1atm pressure,

7%

;and C_{b1} = 16 mg/m³ (0°C, dry gas, 1atm pressure, O_2)

(C) Moisture content

Silica Gel Number: P6

8.3 g (from laboratory report) 5 mL (=grams) Volume of Water Vapour Condensed (Vwc(std)) = (recorded on 0.0067

Laboratory Form 108) Volume of Water Vapour Condensed (V_{wsg(std)}) = 0.0111

Therefore, B_{ws} = $(V_{wc(std)}+V_{wsg(std)})$

 $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

 $B_{ws} =$ 3.91 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.26 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c):

1.24 kg/m³ (0°C, wet, 1 atm pressure)
1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions = (ii) \times (273.2) \times (Ps) (273.2+Ts) (1013.25)

= 0.906 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 9.70 m/s

(ii) Average of post-sampling velocities: 9.55 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs):
9.63 m/s (stack conditions, wet)
N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A = 1.82 \text{ m}^3/\text{s} \text{ (stack conditions)}$

Qstd = Qstack x Ps x Tstd

Qstd = $1.3 \text{ m}^3/\text{s} (0^{\circ}\text{C}, \text{dry gas}, 1 \text{ atm pressure})$

(G) Mass Emission Rate

EMISSION MONITORING RESULTS, DRYER 1 NCIA

1-Nov-13 FINE PARTICULATE (PM10) TOTAL PARTICULATE

Sampling Conditions:		
Stack internal diameter at test location	490 mm	
Stack gas temperature (average)	102.3 °C	375.5 K
Stack pressure (average)	1018 hPa	
Stack gas velocity (average, stack conditions)	9.6 m/s	
Stack gas flowrate (stack conditions)	1.8 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	1.3 m ³ /s	
Fine Particulate (PM10) Testing		
Test Period	9:52	- 10:32
Fine Particulate (PM10) Mass	0.4 mg	
Gas Volume Sampled	0.413 m ³	
Fine Particulate (PM10) Emission*1	0.97 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	1.2 mg/s	
Regulatory Limit	N/A	
Total Particulate Testing		
Test Period	9:52	- 10:32
Total Particulate Mass	1 mg	
Gas Volume Sampled	0.437 m ³	
Total Particulate Emission*1	2.3 mg/m ³	
Total Particulate Mass Emission Rate*2	2.9 mg/s	
Regulatory Limit	20 mg/m ³	
Moisture Content (%)	3.9	
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.9 g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

A=COM

NCIA

AECOM's Project Number:

60305580

Emission Source:

Dryer 2

Date Sampled:

1-Nov-13

ANALYTE(S)

METHOD

Fine Particulate (PM10)

NSW EPA OM - 5

Total Particulate

NSW EPA TM - 15

Observations made during testing period:

Sampling Performed By:

Peter Waddingham

Nic Baldwin

STACK ANALYSIS - PRE-SAMPLING

Date: 1-Nov-13 Client: NCIA

AECOM's Project No: 60305580

Stack/Duct Description: Dryer 2
Test 1: Fine Particulate (PM10)
Test 2: Total Particulate

		Measurement/Obse	rvations		
Stack Inter	nal Dimensions:	Micasarcine il Cobse	TVALIONS	·	
			}		
Diameter OR	490 Length	mm Width	Cross Sectional Area	0.19 m^2	
Length/Wid		vvictri	Minimum No. of		
Equivalent		mm		a	
Equivalent	Diameter 14/A	TOUT .	sampling points=	8	
Distance fr	om sampling plane to		Total No. of sampling	nointe -	0
nearest dis			Total No. of Sampling	PM2.5/10=	8 8
	Not builded.		No. of sampling trave		0
Upstream ((m) = 4		sampled =	rses/ports	2
No. Diamet			Sampled –	PM2.5/10=	2 2
	stream Disturbance:	Fan	No. of sampling point		2
Downstrea		I QII	traverse/port =	s on each	
No. Diamet			uaverse/port =	DM2 EMA-	4
1	wn Stream Disturbance:	Stack Evit		PM2.5/10=	4
- ypc or 50	an outcom Disturbance.	OLOUR EXIL	Fralesia - 7		
Position of	and nameling paint for		Exclusion of any sam		
Position of	each sampling point, for	each traverse:	numbers - comments	:	
	A	В	PM10/2.5 A	PM2.5/10	
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot dis	tances
1 1	33	3	33	3	
2	123	93	123	93	
3	368	338	368	338	
4	457	427	457	427	
5					
6					
7	<u></u>				
8					
9	·				
10			Check of total points		
11			minimum, (yes/no) - c	omments:	
12					
13					
14					
15					
16					
17 [
18 [
19 [General Comments:	· ·	
20			٨		
	Z-ACT		Alam.		
Signed:	acritical and a second		Checked:		
-					
	<u> </u>				

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

1-Nov-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Dryer 2

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Sampling time start:	11:20	Sampling port No.:	0			
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)		CO ₂ (%), (dry)	
1	11:20	157	19.0		0.1	
2	11:21	170	19.0		0.1	
3	11:22	172	19.0		0.1	
4	11:23	181	19.0		0.1	
5	11:24	180	19.1		0.1	
6	11:25	165	18.9		0.1	
7	11:26	160	18.9		0.1	
8	11:27	154	18.9		0.1	
	Averages:	167.4 pr	om 19.0	%	0.1	%

Moisture content (M3):

0.94

Moisture percentage (M2):

5.70 %

Measurements

CO:	0.0167 %,(dry)	N ₂ :	80.9 %,(dry)	
CO ₂ :	0.1 %,(dry)	O ₂ :	19.0 %,(dry)	
Gas Com	positions converted to wet basis:			
CO:	0.0158 %,(wet)	N ₂ :	76.3 %,(wet)	-
CO ₂ :	0.1 %,(wet)	O ₂ :	17.9 %,(wet)	
H₂O:	5.70 %(=M2)			
Therefore,	stack gas density (GD) =	1.26 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date:

1-Nov-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Dryer 2

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Sampling time start:	12:11	Sampling port No.:	0	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	12:11	164	19.0	0.1
2	12:12	164	19.0	0.1
3	12:13	165	19.0	0.1
4	12:14	166	19.0	0.1
5	12:15	167	19.0	0.1
6	12:16	172	19.0	0.1
7	12:17	174	19.1	0.1
8	12:18	171	19.1	0.1
	Averages:	167.9 ppm		

Moisture content (M3):

0.95

Moisture percentage (M2):

4.92 %

Measurements

CO:	0.0168 %,(dry)	N ₂ :	80.9 %,(dry)	
CO ₂ :	0.1 %,(dry)	O ₂ :	19.0 %,(dry)	
Gas Comp	ositions converted to wet basis:			
CO:	0.0160 %,(wet)	N ₂ :	76.9 %,(wet)	
CO ₂ :	0.1 %,(wet)	O ₂ :	18.1 %,(wet)	
H ₂ O:	4.92 %(=M2)			
	stack gas density (GD) =	1.26_kg/m ³	(0°C, wet, 1 atm pressure)	_
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date: 1-Nov-13

Client: NCIA

AECOM's Project No: 60305580 Stack/Duct Description: Dryer 2

Test 1:Fine Particulate (PM10)
Test 2:Total Particulate

	<u> </u>				
Time :	11:15		Barometric Pressure :		hPa
Page No. :	1 of 1	Pitot Correction Factor :		0.84	
Sampling Port No:	1 to 2	Stack Gas D	ensity:	1.26	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
		Max.			(,,,
Compline Desition	Distance	Differential			
Sampling Position No.	from far wall	Pressure	Max Temp, °C	Max Temp. (Ts)	
No.	(m m)	∆P, kilo		K	(Vs) m/s
		Pascals			
1/1	3	0.080	105.0	378.2	11.2
1/2	93	0.092	107.0	380.2	12.0
1/3	338	0.085	101.0	374.2	11.5
1/4	427	0.068	100.0	373.2	10.2
2/1	3	0.098	110.0	383.2	12.4
2/2	93	0.118	112.0	385.2	13.7
2/3	338	0.080	111.0	384.2	11.3
2/4	427	0.066	106.0	379.2	10.1
				· ·	
	_				
	_				
					
			 -		i
		-	-		 _
			-		
		-		 .	
					
Average			106.5	379.7	11.6
7.1.0.090			100.0	318.1	11.6

Static Pressure (Dwyer) (Pa): kPa
Static Pressure (U-tube, if required): -7.6 mm
Absolute pressure in stack (hPa): 1011.25 hPa

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date: 1-Nov-13

Client: NCIA

AECOM's Project No: 60305580

Stack Description No.: Dryer 2

Sample Nozzle No.: fine5 Sample Nozzle Area (An): 1.73 x 10⁻⁵ m²

 Sampling Port No.:
 1 to 2
 Thimble No:
 T127

 Page No:
 1 of 1
 Blank thimble No:
 N/A

Leak Check (Pre-Sampling)

Leak Check (Post Sampling)

 Meter start:
 174.1692 Meter finish:
 174.6697 Meter finish:
 174.6697 Meter finish:
 174.6697 Time start:
 11:30 Time finish:
 11:31 Time start:
 12:30 Time finish:
 12:31

Therefore, leakage rate = no leak L/min Therefore, leakage rate = no leak L/min

(>0.1 l/min. is unacceptable) (>0.1 l/min. is unacceptable)

Repeat: Repeat: Comments: Comments:

Sampling Record Table

Barometric Pressure: 1012 hPa (start); 1012 hPa (finish)

Meter start: 174.1702 Time start: 11:42

Meter correction factor (GMf): 0.9932

	Stopwatch Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:04:45	33	12.1	33.0	26.0		Yes
1/2	0:05:15	123	12.1	34.0	26.0		Yes
1/3	0:05:00	368	12.1	35.0	26.0		Yes
1/4	0:04:30	457	12.1	36.0	26.0		Yes
			:				
2/1	0:05:15	33	12.1	36.0	26.0		Yes
2/2	0:06:00	123	12.1	36.0	26.0		Yes
2/3	0:04:45	368	12.1	37.0	26.0		Yes
2/4	0:04:30	457	12.1	38.0	28.0		Yes
					_		
<u> </u>							
						_	
							
1							
 							
		-					
							
 					-		
├							
· · · · · ·		_					
l			_				
 							
l					 		
 							
 		-			<u> </u>		
							
		-			-		
- 		-	·				
			_				<u>_</u>
	_						———
			-	-			
					-		
Averages				35.6	26.3	no result	
Motor Einich		174 0000		55.0	20.0	no result	

 Meter Finish:
 174.6686
 Time Finish:
 12:24

 Total Condensate collected:
 7 ml
 Silica gei No(s) used:
 P40

STACK ANALYSIS

SAMPLING OF TOTAL PARTICULATE

Date: 1-Nov-13 Client:

NCIA

AECOM's Project No:

60305580

Stack Description No.:

Dryer 2

s3

Sample Nozzle Area (An): Thimble No:

2.85

Sample Nozzie No.: Sampling Port No.: Page No:

1 to 2 1 of 1

T136

Blank thimble No:

NA

Leak Check (Pre-Sampling)
Meter start: 285.4582 Meter finish:
Time start: 11:31 Time finish:

Leak Check (Post Sampling) 285.4582 Meter start: 11:32 Time start:

286.0306 Meter finish: 12:34 Time finish: 286.0306 12:35

x 10⁻⁵m²

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments:

Repeat: Comments:

Sampling Record Table

1012 hPa (start);

285.4596

Time start:

1012 hPa (finish)

Barometric Pressure: Meter start: Meter correction factor (GMf):

0.9981

11:42

Sampling Position No.	Stopwatch Time at Sampling Position	Distance from far wall (mm)	Isokinetic Flowrate	Meter Inlet		Impinger Train Outlet	Flowrate Attained
1/1	0:05:00	33	(L/min) 14.3	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/2	0:10:00	123	15.3	28.0 30.0	26.0		Yes
1/3	0:15:00	368	14.9	31.0	28.0		Yes
1/4	0:20:00	457	13.2	32.0	29.0		Yes
	0.20.00	407	13.2	32.0	30.0		Yes
2/1	0:25:00	33	15.6	32.0	30.0		Yes
2/2	0:30:00	123	17.2	32.0	30.0		Yes
2/3	0:35:00	368	14.2	33.0	30.0		Yes
2/4	0:40:00	457	12.9	34.0	31.0		Yes
A							
Averages leter Finish:		286.0292		31.5 Time Finish:	29.3	no result	

Total Condensate collected:

9 ml

Silica gel No(s) used:

P38

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:

1-Nov-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Dryer 2

Test 1:Fine Particulate (PM10)

Test 2:Total Particulate

Time :	12:40	Barometric P	ressure:	1012	hPa
Page No. :	1 of 1	Pitot Correction Factor:		0.84	
Sampling Port No:	1 to 2	Stack Gas D	ensity:	1.26	kg/m ³
Pitot Tube Type :	S		•		(0 °C, Wet, 1 Atm)
		Max.			<u>, </u>
Sampling Position	Distance	Differential			
No.	from far wall	Pressure	Max Temp. °C	Max Temp. (Ts)	Corrected Velocity
NO.	(mm)	ΔP, kilo	'	К	(Vs) m/s
	L.	Pascals			
1/1	3	0.081	100.0	373.2	11.2
1/2	93	0.098	102.0	375.2	12.3
1/3	338	0.089	108.0	381.2	11.8
1/4	427	0.069	104.0	377.2	10.3
2/1	3	0.109	103.0	376.2	13.0
2/2	93	0.117	109.0	382.2	13.5
2/3	338	0.088	110.0	383.2	11.8
2/4	427	0.077	105.0	378.2	10.9
		<u> </u>			
	<u> </u>				
		<u> </u>			<u> </u>
 					
 					
 					
<u> </u>					
		_			
Average			105.1	378.3	11.9

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) :

kPa -7.5 mm 1011.26 hPa

AECOM

STACK ANALYSIS - PM10 CALCULATIONS

Date:	1-Nov-13	Client:	NCIA	
AECOM's Project No:	60305580	Stack/Duct I	Description:	Dryer 2
1. Gas Analysis				
	%			
%CO₂	0.1			
%O₂	19.0			
%N ₂ +%CQ	80.9			
Fraction Moisture Content, Bws	0.05	M _a =	0.95	
2. Molecular Weight of Stack Gas	(Dry Basis)			
Mol. Wt. of Stack Gas (dry)	28.78			
Mol. Wt. of Stack Gas (wet)	28.16			
3. Absolute Stack Pressure				
	Pascals	in. Hg		
Barometric Pressure (Pbar)	101200	29.88		
Stack Static Pressure (Pg)	101126	29.85		
Absolute Stack Pressure		29.85		
4. Viscosity of Stack Gas				
	°C	°F		
Average Stack Temp.	105.1	221.2		
Average Meter Temperature:	30.9			
Stack Gas Viscosity		217.0		
5. Cyclone Flow Rate				
Cyclone Flow Rate	ft ^s /min 0.58	m ³ /min 0.0204	L/min 20.44	L/s 0.34
				0.0-7

6. Nozzle Velocity, Rmin and Rmax

Nozzle Number	Nozzle Diameter	Nozzle	Velocity	Rmin	Rmax	Vmin	Vmin	Vmax	Vmax
	(inches)	ft/sec	m/s	[-]	14	ft/sec	m/s	ft/sec	m/s
0	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
11	0.131	103.52	34.07	0.762	1.227	78.86	25.87	126.98	41.66
	0.159	70.26	23.13	0.730	1.247	51.26	16.82	87.61	28.74
. 3	0.165	64.68	21.29	0.720	1.253	46.55	15.27	81.04	26.59
4	0.000	#DIV/0I	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/01	#DIV/0I	#DIV/0!	#DIV/0
5	0.185	51.65	17.00	0.683	1.273	35.29	11.58	65.77	21.58
6	0.216	37.86	12.46	0.596	1,314	22.56	7.40	49.74	16.32
7	0.000	#DIV/0!	#DIV/0!	#DIV/0	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
8	0.267	24.75	8.15	#NUM!	1.404	12.37	4.06	34.74	11.40
9	0.306	18.95	6.24	#NUM!	1.490	9.47	3.11	28.23	9.26
10	0.339	15.43	5.08	#NUM!	1.576	7.71	2.53	23.14	7.59
11	0.431	9.53	3.14	#NUM!	1.870	4.77	1.56	14.30	4.69
		Nozzle	Nozzle	Sample				11100	
	Nozzle Diameter	Diameter	Area	Rate					
Selected Nozzle	(inches)	(m)	(m²)	(L/min)					
5	0.185	0.005	0.000017	13.1					

STACK ANALYSIS - PM10 CALCULATIONS CONTINUED

Date: AECOM's Project No:

1-Nov-13 Client: NCIA 60305580 Stack/Duct Description: Dryer 2

7.Sampling Time

Total Run Time

40 Number of points

Velocity Head (pitot) Pa 81.42 98.10 89.27 68.67 108.89 116.74 88.29 76.52	in H20 0.33 0.39 0.36 0.28 0.44 0.47 0.35 0.31	0.57 0.63 0.60 0.52 0.66 0.68 0.60 0.55	mins 4.7 5.2 5.0 4.4 5.5 5.7 4.9 4.6
98.10 89.27 68.67 108.89 116.74 88.29	0.33 0.39 0.36 0.28 0.44 0.47 0.35	0.63 0.60 0.52 0.66 0.68 0.60	4.7 5.2 5.0 4.4 5.5 5.7 4.9
98.10 89.27 68.67 108.89 116.74 88.29	0.39 0.36 0.28 0.44 0.47 0.35	0.63 0.60 0.52 0.66 0.68 0.60	5.5 5.7 4.9
89.27 68.67 108.69 116.74 88.29	0.36 0.28 0.44 0.47 0.35	0.60 0.52 0.66 0.68 0.60	5.5 5.7 4.9
68.67 108.89 116.74 68.29	0.44 0.47 0.35	0.52 0.66 0.68 0.60	5.5 5.7 4.9
108.89 116.74 88.29	0.44 0.47 0.35	0.66 0.68 0.60	5.5 5.7 4.9
68.29	0.47	0.68	5.7 4.9
68.29	0.47	0.68	5.7 4.9
68.29	0.35	0.60	4.9
68.29 76.52	0.35	0.60	
76.52	0.31	0.55	4.6
			1
			+
			1
	_		1
			_
		_	+
			+
			+
			1
			+
			+
		+-	+
			+
			1
			1
			+
			+
· · · · · · · · · · · · · · · · · · ·			
_ 			
A.			+
Sc	verage	0.60	40.00

Total time	Cull bours	Full	Seconds
	Full hours	ruli minuto-	Seconds
min		minutes	
4.8	0	4	45
_10.0	0	10	0
15.0 19.5	0	15	0
19.5	0	19	30
24.8 30.8 35.5 40.0	0	24 30 35 40	45 45 30
20.0	0	30	45
30.0		26	20
35.5	0	35	30
40.0	0	40	0
-			
	_		
-			
-			
			T
			-
			_
			-
	_		
			-
	 -		
	-		-
		I	I

Aerodynamic Cut Size $(u_{\rm cw})$ 220.5 PM $_{\rm 10}$ Flow rate at actual cyclone conditions $({\bf Q_a})$ 0.0151

Actual D₅₀

10.6

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

Date: 1-Nov-13 Client: NCIA

AECOM's Project No: 60305580 Stack/Duct Description: Dryer 2

(A) Sample gas volume at standard conditions

Metered volume (MV₃): 0.4950 m³ Average barometric

Average gas meter temp. (T_{M2}): 30.9 °C pressure (P_{BARO}) 1012 hPa

304.1 K Average pressure at meter

(P_{M.2}) 1012.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure): 0.4442 m³

(B) PM10 concentration at standard conditions

Blank thimble No.: N/A Blank weight: 9
Thimble No. used: T127 PM10 Weight 0.0004 g

Final PM10 Weight (Mp1): 0.00040 g

PM10 Concentration (C1): $= M_{p1}/MV_4 = 0.0009 \text{ g/m}^3 \text{ (0°C, dry gas,}$

1atm pressure)

;and C_2 = 0.9 mg/m³ (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 0.1 %

Therefore, C_c : = $C_a \times 12/CO_2\% = 0.11 \text{ g/m}^3 (0^{\circ}C, \text{ dry gas, 1atm})$

pressure, 12% CO₂)

;and C_{c1} = 110 mg/m³ (0°C, dry gas, 1atm

pressure, 12% CO₂)

O₂ Basis 7 %

Average O₂%: 19.0 %

Therefore, C_b : = $C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 0.0063 g/m³ (0°C, dry gas, 1atm pressure,

7% O₂)

;and $C_{b1} = 6.3 \text{ mg/m}^3 (0^{\circ}\text{C}, \text{dry gas, 1atm pressure,})$

7% O₂)

(C) Moisture content

Silica Gel Number: P40

 V_v = 9.6 g (from laboratory report) V_w = 7 mL (=grams) Volume of Water Vapour Condensed ($V_{wc(std)}$) = 0.0093 (recorded on

Volume of Water Vapour Condensed (V_{wsq(std)}) = 0.0128 Laboratory Form 108)

Therefore, $B_{ws} = \frac{(V_{wx(std)} + V_{wsg(std)})}{(V_{wx(std)} + V_{wsg(std)})}$

 $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

 $B_{ws} = 4.75 \%$

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Fine Particulate (PM10)

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.26 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c):

1.25 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

= 0.899 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 11.55 m/s

(ii) Average of post-sampling velocities: 11.85 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs): 11.70 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A =$ 2.21 m³/s (stack conditions)

Qstd = Qstack x \underline{Ps} x $\underline{(Tstd)}$ x $\underline{(100 - \underline{B}_{w})}$ (Pstd) (Ts) 100

Qstd = $1.5 \text{ m}^3/\text{s} (0^{\circ}\text{C}, \text{dry gas}, 1 \text{ atm pressure})$

(G) Mass Emission Rate

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

1-Nov-13

NCIA Client:

AECOM's Project No:

60305580 Stack/Duct Description:

Dryer 2

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

0.5685 m³

Average barometric

Average gas meter temp. (T_{M,2}):

30.4 °C

pressure (PBARO)

1012 hPa

303.6 K

Average pressure at meter $(P_{M,2})$

1012.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure):

0.5109 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No.:

Blank weight: Total Particulate Weight

g 0.0011 q

Thimble No. used: Final Total Particulate Weight (Mp1):

Total Particulate Concentration (C1):

T136

0.00110 g $=M_{01}/MV_4=$

0.0022 g/m3 (0°C, dry gas, 1atm pressure)

;and C2 =

2.2 mg/m³ (0°C, dry gas, 1atm pressure)

12 % CO₂ Basis

Average CO₂%:

0.1 %

Therefore, C_c:

 $= C_a \times 12/CO_2\% =$

0.26 g/m3 (0°C, dry gas, 1atm pressure, 12% CO₂)

;and C_{c1} =

260 mg/m³ (0°C, dry gas, 1atm

pressure, 12% CO₂)

O₂ Basis

7 %

Average O2%:

19.0 %

Therefore, C_b:

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$

0.015 g/m3 (0°C, dry gas, 1atm pressure,

;and C_{b1} =

15 mg/m3 (0°C, dry gas, 1atm pressure, Q_2) 7%

9 mL (=grams)

(recorded on

Laboratory Form 108)

(C) Moisture content

Silica Gel Number:

P38

11 5 g (from laboratory report)

Volume of Water Vapour Condensed (V_{wc(std)}) =

0.0120

Volume of Water Vapour Condensed (Vwsg(std)) =

0.0154

Therefore, $B_{ws} =$

(Vwc(std)+Vwsg(std))

 $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

B_{ws} =

5.08 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

A=COM

Total Particulate

(D)	Gas	Composition	and	Density	(Re-calculation)
-----	-----	-------------	-----	---------	------------------

(i) Initial gas density for sampling: 1.26 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c):

1.25 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

= 0.899 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 11.55 m/s

(ii) Average of post-sampling velocities: 11.85 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and post-sampling velocities (Vs):

11.70 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A =$ 2.21 m³/s (stack conditions)

Qstd = Qstack x \underline{Ps} x $\underline{(Tstd)}$ x $\underline{(100 - B_w)}$ (Pstd) (Ts) 100

Qstd = 1.5 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

EMISSION MONITORING RESULTS, DRYER 2 NCIA

1-Nov-13 FINE PARTICULATE (PM10) TOTAL PARTICULATE

Sampling Conditions:	490 mm	
Stack internal diameter at test location		9.0 K
Stack gas temperature (average)	105.6 C 373	J.O IX
Stack pressure (average)	12 m/s	
Stack gas velocity (average, stack conditions)	2.2 m ³ /s	
Stack gas flowrate (stack conditions)	1.5 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	1.5 m /s	
Fine Particulate (PM10) Testing	11:42 - 12	:24
Test Period	0.4 mg	-
Fine Particulate (PM10) Mass	0.444 m ³	
Gas Volume Sampled	0.9 mg/m ³	
Fine Particulate (PM10) Emission*1	1.4 mg/s	
Fine Particulate (PM10) Mass Emission Rate*2	NA	
Regulatory Limit		
Total Particulate Testing	11:42 - 12	::24
Test Period	1.1 mg	
Total Particulate Mass	0.511 m ³	
Gas Volume Sampled	2.2 mg/m ³	
Total Particulate Emission*1	3.3 mg/s	
Total Particulate Mass Emission Rate*2	20 mg/m ³	
Regulatory Limit	5.1	
Moisture Content (%)	1.29 kg/m ³	
Gas Density (dry at 1 atmosphere)	28.8 g/g-mole	
Dry Molecular Weight		

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

NCIA

AECOM's Project Number:

60305580

Emission Source:

Glazeline

Date Sampled:

30-Oct-13

ANALYTE(S)

METHOD

Fine Particulate (PM10)

NSW EPA OM - 5

Total Particulate

NSW EPA TM - 15

Observations made during testing period:

Sampling Performed By:

Colin Clarke

STACK ANALYSIS - PRE-SAMPLING

Date:

30-Oct-13

Client:

NCIA

60305580

AECOM's Project No:
Stack/Duct Description: Glazeline
Test 1: Fine Particulate (PM10)

Test 2: Total Particulate

		Measurement/Obse	rvations				
Stack Inter	rnal Dimensions:						
Diameter OR	1000		Cross Sectional Area	0.79 m^2			
-	Length	Width	NAC-Service Name of				
Length/Wid Equivalent		PR PR	Minimum No. of	40			
Equivalent	Diamete N/A	mm	sampling points=	12			
Distance fr	rom sampling plane to		Total No. of sampling	points = 16	3		
	sturbances:		Total riol of Gamping	PM2.5/10= 12			
			No. of sampling travel	rses/ports			
Upstream (sampled =	. 2			
No. Diame				PM2.5/10= 2			
	ostream Disturbance:	Fan	No. of sampling points	s on each			
Downstrea			traverse/port =	8			
No. Diame				PM2.5/10= 6			
Type of Do	own Stream Disturbance:	Stack Exit	,				
			Exclusion of any samp	•			
Position of	each sampling point, for	each traverse:	numbers - comments:				
		_					
No.	A Distance from wall	B	PM10/2.5 A Distance from wall	PM2.5/10 B			
1	33	S-type Pitot distances 3	Ulstance from Wall	S-Type Pitot distan	ices		
2	105	75	146	14 116			
3	194	164	296	266			
4	323	293	704	674			
	677	647	854	824			
5 6	806	776	956	926			
7	895	865		, , , ,			
8	967	937					
9							
10			Check of total points a	against			
11			minimum, (yes/no) - c	omments:			
40 '							
12			l				
13							
13 14							
13 14 15							
13 14 15 16							
13 14 15 16 17							
13 14 15 16 17 18			Conoral Comments				
13 14 15 16 17 18 19			General Comments:				
13 14 15 16 17 18			General Comments:				
13 14 15 16 17 18 19	13000		General Comments:				

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Glazeline

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Sampling time start:	11:30	Sampling port No.:		0			
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂	(%), (dry)		CO ₂ (%), (dry)	
1	11:30	0		20.9		0.0	
2	11:31	0		20.9		0.0	
3	11:32	0		20.9		0.0	
4	11:33	0		20.9		0.0	
5	11:34	0		20.9		0.0	
6	11:35	0		20.9		0.0	
7	11:36	0		20.9		0.0	
8	11:37	0		20.9		0.0	
	Averages:	0.0 p	ppm	20.9	%	0.0	%

Moisture content (M3):

Moisture percentage (M2):

0.97 3.50 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	-
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Com	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	76.3 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.2 %,(wet)	
H ₂ O:	3.50 %(=M2)			
Therefore	, stack gas density (GD) =	1.27 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore	, stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date: 30-Oct-13 Client: NCIA

AECOM's Project No: 60305580 Stack/Duct Description: Glazeline

Test 1: Fine Particulate (PM10)

Test 2: Total Particulate

Sampling time start:	12:42	Sampling port No.	:	0			
Measurement No.	Time sampled	CO (ppm). (dry)		O ₂ (%), (dry)		CO ₂ (%), (dry)	
1	12:42	0		20.9		0.0	
2	12:43	0	\neg	20.9		0.0	
3	12:44	0		20.9		0.0	
4	12:45	0		20.9		0.0	
5	12:46	0		20.9		0.0	
6	12:47	0		20.9		0.0	
7	12:48	0		20.9		0.0	
8	12:49	0		20.9		0.0	
	Averages:	0.0 p	pm	20.9	%	0.0	%

Moisture content (M3):

0.99

Moisture percentage (M2):

1.19 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	ositions converted to wet ba			
CO:	0.0000 %,(wet)	N ₂ :	78.2 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.7 %,(wet)	
H ₂ O:	1.19 %(=M2)			
Therefore,	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No:

60305580 Glazeline

Stack/Duct Description:
Test 2:Total Particulate

Time: 10:45 Barometric Pressure : 1014 hPa Page No. : 1 of 1 Pitot Correction Factor: 0.84 Sampling Port No: 1 to 2 Stack Gas Density: kg/m³ 1.27 Pitot Tube Type: S (0 °C, Wet, 1 Atm) Max. Differential Distance Sampling Position Corrected Velocity Max Temp. (Ts) from far wall Pressure Max Temp. °C No. Κ (Vs) m/s (mm) ΔP , kilo Pascals 1/1 0.135 29.0 302.2 12.9 1/2 75 0.125 29.0 302.2 12.4 1/3 164 0.143 29.0 302.2 13.3 29.0 1/4 293 0.157 302.2 13.9 1/5 647 0.175 30.0 303.2 14.7 1/6 776 0.172 30.0 303.2 14.5 0.147 1/7 865 30.0 303.2 13.5 1/8 937 0.146 30.0 303.2 13.4 2/1 3 0.182 30.0 303.2 15.0 2/2 75 0.181 30.0 303.2 14.9 2/3 164 0.160 30.0 303.2 14.0 2/4 293 0.157 30.0 303.2 13.9 2/5 647 0.181 30.0 303.2 14.9 2/6 776 0.147 30.0 303.2 13.5 2/7 865 0.142 30.0 303.2 13.2 303.2 2/8 937 0.095 30.0 10.8 Average 29.8 303.0 13.7

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required): Absolute pressure in stack (hPa):

kPa -3.8 mm

1013.63 hPa

A=COM

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date: 30-Oct-13

NCIA Client:

60305580

AECOM's Project No: Stack Description No.:

Glazeline

fine5

Sample Nozzle Area (An):

1.73

Sample Nozzle No.: Sampling Port No.:

1 to 2

Thimble No:

Page No:

1 of 1

Blank thimble No:

T128 N/A

Time start:

Leak Check (Pre-Sampling)
Meter start: 172.6655 Meter finish:

172.6655 Meter start: 11:33 Time start:

Leak Check (Post Sampling)
Meter start: 173.6790 Meter finish: 13:01 Time finish:

no leak

173.6790 13:02

x 10⁻⁵m²

Therefore, leakage rate = no leak

11:32 Time finish:

Therefore, leakage rate =

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat:

Comments:

Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1014 hPa (start);

L/min

1014 hPa (finish)

Meter start: 172.6680 Time start:

11:37

0.9932

!	Stopwatch						
	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
osition No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:06:15	44	12.6	29.0	21.0	1 1 1	Yes
1/2	0:06:00	146	12.6	29.0	21.0		Yes
1/3	0:06:15	296	12.6	30.0	21.0		Yes
1/4	0:06:30	704	12.6	30.0	21.0		Yes
1/5	0:07:00	854	12.6	30.0	21.0		Yes
1/6	0:07:00	956	12.6	30.0	21.0		Yes
2/1	0:07:15	44	12.6	31.0	22.0		Yes
2/2	0:07:00	146	12.6	31.0	22.0		Yes
2/3	0:06:45	296	12.6	31.0	22.0		Yes
2/4	0:06:30	704	12.6	31.0	22.0		Yes
2/5	0:07:00	854	12.6	31.0	22.0		Yes
2/6	0:06:30	956	12.6	31.0	22.0		Yes
+							
_							
					 -		
-							
		 					
				-			
		-					
Averages				30.3	21.5	no result	······································

Total Condensate collected:

173.6762 0 ml Time Finish: Silica gel No(s) used:

Z16

AECOM

STACK ANALYSIS

SAMPLING OF TOTAL PARTICULATE

Date: 30-Oct-13

NCIA Client:

AECOM's Project No:

60305580

Stack Description No.:

Glazeline

s2

Sample Nozzle Area (An):

1.26

Sample Nozzle No.: Sampling Port No.: Page No:

1 to 2 1 of 1

Thimble No:

T134 N/A

Blank thimble No:

284.9434

Leak Check (Pre-Sampling)
Meter start: 284.1067 Meter finish:
Time start: 11:33 Time finish:

284.1067 Meter start: 11:34 Time start:

Leak Check (Post Sampling)
Meter start: 284.9434 Meter finish: 13:02 Time finish:

no leak

13:03

x 10⁻⁵m²

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

L∕min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat:

Comments:

Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1014 hPa (start);

1014 hPa (finish)

Meter start:

284.1081

Time start:

11:37

Meter correction factor (GMf) 0.9981

	Stopwatch						
	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:05:00	33	9.3	22.0	22.0	- ' ` '	Yes
1/2	0:10:00	105	9.0	22.0	22.0		Yes
1/3	0:15:00	194	9.6	23.0	22.0		Yes
1/4	0:20:00	323	10.1	23.0	22.0		Yes
1/5	0:25:00	677	10.6	24.0	22.0		Yes
1/6	0:30:00	806	10.5	24.0	22.0		Yes
1/7	0:35:00	895	9.7	25.0	23.0		Yes
1/8	0:40:00	967	9.7	25.0	23.0		Yes
2/1	0:45:00	33	10.8	25.0	23.0		Yes
2/2	0:50:00	105	10.8	26.0	24.0		Yes
2/3	0:55:00	194	10.1	26.0	24.0		Yes
2/4	1:00:00	323	10.0	26.0	24.0	_	Yes
2/5	1:05:00	677	10.8	25.0	24.0		Yes
2/6	1:10:00	806	9.7	25.0	24.0		Yes
2/7	1:15:00	895	9.5	25.0	24.0		Yes
2/8	1:20:00	967	7.8	25.0	24.0		Yes
							
					L		
Averages				24.4	23.1	no result	L

Meter Finish: Total Condensate collected: 0 ml

Silica gel No(s) used:

Z6

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:

30-Oct-13

Client:

NCIA

AECOM's Project No: Stack/Duct Description:

60305580

Glazeline

Test 2:Total Particulate

Time:	13:05	Barometric P	ressure :	1014	hPa
Page No. :	1 of 1	Pitot Correcti		0.84	4
Sampling Port No:	1 to 2	Stack Gas Density:		1.28	kg/m ³
Pitot Tube Type :	S	Oldon Guo B	on loney.	7.20	(0 °C, Wet, 1 Atm)
r tot rabe rype .		Max.	-	<u> </u>	(o o, wei, i Aiii)
	Distance	Differential			
Sampling Position	from far wall	Pressure	Max Temp. °C	Max Temp. (Ts)	
No.	(mm)	ΔP, kilo	IVIAX TOMP. O	K	(Vs) m/s
	(,	Pascals			
1/1	3	0.129	30.0	303.2	12.5
1/2	75	0.124	30.0	303.2	12.3
1/3	164	0.154	30.0	303.2	13.7
1/4	293	0.168	30.0	303.2	14.3
1/5	647	0.168	30.0	303.2	14.3
1/6	776	0.180	30.0	303.2	14.8
1/7	865	0.139	30.0	303.2	13.0
1/8	937	0.146	30.0	303.2	13.4
2/1	3	0.174	30.0	303.2	14.6
2/2	75	0.175	30.0	303.2	14.6
2/3	164	0.173	30.0	303.2	14.5
2/4	293	0.168	30.0	303.2	14.3
2/5	647	0.159	30.0	303.2	13.9
2/6	776	0.165	30.0	303.2	14.2
2/7	865	0.156	30.0	303.2	13.8
2/8	937	0.109	30.0	303.2	11.5
			_		
_					
	ļ				
	ļ		_		
			00.0		
Average		İ	30.0	303.2	13.7

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa -4.5 mm 1013.56 hPa

AECOM

STACK ANALYSIS - PM10 CALCULATIONS

Date:	30-Oct-13	Client:	NÇIA	
AECOM's Project No:	60305580	Stack/Duct f	Description:	Glazeline
1. Gas Analysis				
	%			
%CO₂	0.0			
%O₂	20.9			
%N₂+%CO	79.1			
Fraction Moisture Content, Bws	0.01	M ₃ =	0.99	
2. Molecular Weight of Stack Gas	(Dry Basis)			
Mol. Wt. of Stack Gas (dry)	28.84			
Mol. Wt. of Stack Gas (wet)	28.46			
3. Absolute Stack Pressure				
	Pascals	In. Hg		
Barometric Pressure (Pbar)	101400	29.93		
Stack Static Pressure (Pg)	101356	29.92		
Absolute Stack Pressure		29.92		
4. Viscosity of Stack Gas				
	°C	°F		
Average Stack Temp.	30.0	86.0		
Average Meter Temperature:	25.9			
Stack Gas Viscosity		184.8		
5. Cyclone Flow Rate				
	ft³/mln	m³/min	L/min	L/s
Cyclone Flow Rate	0.46	0.0162	16.24	0.27

6. Nozzle Velocity, Rmin and Rmax

Nozzle Number	Nozzle Diameter	Nozzie	Velocity	Rmin	Rmax	Vmin	Vmin	∨max	Vmax
	(inches)	ft/sec	m/s	F-1	[-]	ft/sec	m/s	ft/sec	m/s
0	0.000	#DIV/0I	#DIV/0!	#DIV/0!	#DIV/01	#DIV/0t	#DIV/0!	#DIV/0I	#DIV/01
11	0.131	82.28	27.08	0.759	1.228	62.45	20.49	101.08	33.16
2	0.159	55.84	18.38	0.724	1.250	40.44	13.27	69.81	22.90
3	0.165	51.41	16.92	0.713	1.257	36.67	12.03	64.60	21.19
4	0.000	#DIV/0I	#DIV/0!	#DIV/0!	#DiV/0!	#DIV/01	#DIV/0!	#DIV/QI	#DIV/0!
5	0.185	41.05	13.51	0.674	1.278	27.66	9.07	52.48	17.22
6	0.216	30.09	9.90	0.577	1.321	17.35	5.69	39.76	13.04
7	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
8	0.267	19.67	6.47	#NUM!	1.417	9.84	3.23	27.87	9.14
9	0.306	15.06	4.96	#NUM!	1.507	7.53	2.47	22.59	7.41
10_	0.339	12.26	4.04	#NUM!	1.599	6.13	2.01	18.39	6.03
11	0.431	7.58	2.49	#NUM!	1.906	3.79	1.24	11.37	3.73
		Nozzie	Nozzle	Sample					
	Nozzle Diameter	Diameter	Area	Rate					
Selected Nozzle	(inches)	(m)	(m ²)	(L/min)					
5	0.185	0.005	0.000017	13.6					

STACK ANALYSIS - PM10 CALCULATIONS CONTINUED

30-Oct-13 Client: NCIA 60305580 Stack/Duct Description: Glazeline Date: AECOM's Project No: AECOM's Project No: 60305580 Stack/Duct Description: Glazeline

7.Sampling Time Total Run Time 80 Number of points 12

Velocity Head (pitot)	Vel Head	Sqr Root	Dwell time
Pa	in H20		mins
128.51	0.52	0.72	6.0
123.61	0.50	0.70	5.8
154.02	0.62	0.79	6.5
167.02	0.02	0.73	6.0
167.75	0.67	0.82	6.8
167.75	0.67	0.82	6.8
179.52	0.72	0.85	7.0
173.64	0.70	0.83	6.9
174.62	0.70	0.84	7.0
172.66	0.69	0.83	6.9
102.00	0.03	0.00	0.3
167.75	0.67	0.82	6.8
158.92	0.64	0.80	6.6
164.81	0.66	0.81	6.8
	+	_	
 -			
-			
	+		
	+		
	+		— —
			
	+	 	
	+		
		<u> </u>	
		ļ	
		l	
			
	- 		
	+	_	
	+		
-	_		
-			
-	1	1	
	+		
	+		
	+		
			L
		1	
	1	 	
	+		
	+		
			ļ
			L
	1		-
	1		_
	+	-	
	+	_	
		1	
	1		
	+		
	+	-	
	1		
	Average	0.80	80.00
	Square	0.64	
	- aquai o		

Total time	Full hours	Full	Seconds
min		minutes	
min 6.3 12.3 18.5	. 0	6 12	15 15 30
12.3	0	12	15
18.5	0	18	30
25.0 32.0 39.0	0	25	0
32.0	0	32	0
30.0	0	32 39	0
29.0	U	39	-
		40	
46.3 53.3	. 0	46	15
53.3	. 0	53	15
60.0	.1	0	. 0
66.5	1	6	30
73.5	1	13	30
80.0	1	20	0
00.0		20	
		1	-
<u> </u>			
-			!
-			
-		ĺ	
			\vdash
			\vdash
_		-	\vdash
		-	\vdash
1			
		i	\vdash
			\vdash
			ì
			<u> </u>
			i l
			<u> </u>
_			\vdash
			\vdash
ļ <u>.</u>			\vdash
			\Box
1			
	· · ·		\vdash
		-	\vdash
		<u> </u>	\vdash
L			
			\vdash
			\vdash
			\vdash
<u> </u>			\vdash
<u> </u>	ļ		\vdash
—			\vdash
			\vdash
<u> </u>			\vdash
	· · · · · · · · · · · · · · · · · · ·		\vdash
			\vdash

Aerodynamic Cut Size ($u_{\rm eve}$) 185.5 PM₁₀ Flow rate at actual cyclone conditions ($Q_{\rm a}$) 0.0120 Actual D₅₀

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

30-Oct-13 Client: **NCIA**

AECOM's Project No: 60305580 Stack/Duct Description: Glazeline

(A) Sample gas volume at standard conditions

1.0013 m³ Average barometric Metered volume (MV₃):

pressure (PBARO) 25.9 °C Average gas meter temp. (T_{M2}): 1014 hPa

> 299.1 K Average pressure at meter

> > $(P_{M,2})$ 1014.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure): 0.9153 m³

(B) PM10 concentration at standard conditions

Blank thimble No.: N/A Blank weight: Thimble No. used: T128 PM10 Weight <0.0002 g

Final PM10 Weight (Mp1): <0.0002 g

<0.00022 g/m³ (0°C, dry gas, PM10 Concentration (C1): $=M_{p1}/MV_4=$

1atm pressure)

;and C₂ = <0.22 mg/m³ (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 0.0 %

<0.00022 g/m3 (0°C, dry gas, 1atm Therefore, C_c: $= C_a \times 12/CO_2\% =$

pressure, 12% CO₂)

;and C_{c1} = <0.22 mg/m³ (0°C, dry gas, 1atm

pressure, 12% CO₂)

7%

 O_2)

O₂ Basis

Average O₂%: 20.9 %

Therefore, C_h: $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ <0.031 g/m³ (0°C, dry gas, 1atm pressure,

> 7% O_2)

;and C_{b1} = <31 mg/m3 (0°C, dry gas, 1atm pressure,

(C) Moisture content

Silica Gel Number: Z16

8.2 g (from laboratory report) $V_w =$ 0 mL (=grams) Volume of Water Vapour Condensed (Vwc(std)) = 0.0000 (recorded on

Laboratory Form 108) Volume of Water Vapour Condensed (V_{wsg(std)}) = 0.0109

Therefore, B_{ws} = $(V_{wc(std)}+V_{wsg(std)})$

 $(V_{wc(std)} + V_{wsq(std)} + V_{m(std)})$

 $B_{ws} =$ 1.18 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Fine Particulate (PM10)

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.27 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c):

1.25 kg/m³ (0°C, wet, 1 atm pressure)

1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions = (ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

= 1.127 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 13.99 m/s

(ii) Average of post-sampling velocities: 14.00 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs):

N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A = 11.00 \text{ m}^3/\text{s} \text{ (stack conditions)}$

Qstd = Qstack x \underline{Ps} x $\underline{(Tstd)}$ x $\underline{(100 - B_w)}$ (Pstd) (Ts) 100

Qstd = 9.8 m³/s (0°C, dry gas, 1 atm pressure)

(G) Mass Emission Rate

A=COM

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

30-Oct-13 Client: **NCIA**

AECOM's Project No: 60305580 Stack/Duct Description: Glazeline

(A) Sample gas volume at standard conditions

0.8314 m³ Average barometric Metered volume (MV₃):

pressure (P_{BARO}) 23.8 °C Average gas meter temp. (T_{M2}): 1014 hPa

> 297.0 K Average pressure at meter

> > $(P_{M,2})$ 1014.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure): 0.7653 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No.: N/A Blank weight: Thimble No. used: 0.0004 g T134 Total Particulate Weight

0.00040 g Final Total Particulate Weight (Mp1):

0.00052 g/m3 (0°C, dry gas, Total Particulate Concentration (C1): $=M_{p1}/MV_4=$

1atm pressure)

;and C₂ = 0.52 mg/m3 (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 0.0 %

0.00052 g/m3 (0°C, dry gas, 1atm Therefore, C_c: $\equiv C_a \times 12/CO_2\% =$

pressure, 12% CO₂)

;and C_{c1} = 0.52 mg/m³ (0°C, dry gas, 1atm

pressure, 12% CO₂)

O₂ Basis

Average O₂%: 20.9 %

Therefore, Ch: $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 0.073 g/m3 (0°C, dry gas, 1atm pressure,

> 7% O_2)

;and C_{b1} = 73 mg/m³ (0°C, dry gas, 1atm pressure,

7% O_2)

(C) Moisture content

Silica Gel Number: Z6

7 g (from laboratory report) 0 mL (=grams) Volume of Water Vapour Condensed (Vwc(std)) = (recorded on 0.0000

Laboratory Form 108) Volume of Water Vapour Condensed (V_{wsg(std)}) = 0.0093

Therefore, $B_{ws} =$ $(V_{wq(std)}+V_{wsg(std)})$

 $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

 $B_{ws} =$ 1.21 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

(D) Gas Composition and Density (Re-calculation)

1.27 kg/m³ (from Laboratory Form 107) (i) Initial gas density for sampling:

(ii) Re-calculated gas density based on moisture content in (c):

1.25 kg/m³ (0°C, wet, 1 atm pressure) 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions =

(ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

1.127 kg/m³ (stack conditions, wet) =

(E) Gas Velocities

13.68 m/s (i) Average of pre-sampling velocities:

(ii) Average of post-sampling velocities: 13.73 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs):

13.70 m/s (stack conditions, wet) N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

10.76 m³/s (stack conditions) Qstack = Vs x A =

(Tstd) x (100 - B_w) <u>Ps</u> x Qstd = Qstack x (Pstd) (Ts)

9.6 m³/s (0°C, dry gas, 1 atm pressure) Qstd =

(G) Mass Emission Rate

EMISSION MONITORING RESULTS, GLAZELINE NCIA

30-Oct-13 FINE PARTICULATE (PM10) TOTAL PARTICULATE

Sampling Conditions:		
Stack internal diameter at test location	1000 mm	
Stack gas temperature (average)	29.9 °C	303.1 K
Stack pressure (average)	1014 hPa	
Stack gas velocity (average, stack conditions)	14 m/s	
Stack gas flowrate (stack conditions)	11 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	9.7 m ³ /s	
Fine Particulate (PM10) Testing		
Test Period	11:37	13:00
Fine Particulate (PM10) Mass	<0.2 mg	
Gas Volume Sampled	0.915 m ³	
Fine Particulate (PM10) Emission*1	<0.22 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	<2.2 mg/s	
Regulatory Limit	N/A	
Total Particulate Testing		
Test Period	11:37 -	13:00
Total Particulate Mass	0.4 mg	
Gas Volume Sampled	0.765 m ³	
Total Particulate Emission*1	0.52 mg/m ³	
Total Particulate Mass Emission Rate*2	5 mg/s	
Regulatory Limit	20 mg/m ³	
Moisture Content (%)	1.2	
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

NCIA

AECOM's Project Number: 60305580

Emission Source: Hot Air Cooler 1

Date Sampled: 28-Oct-13

ANALYTE(S) METHOD

Fine Particulate (PM10) NSW EPA OM - 5

Total Particulate NSW EPA TM - 15

Observations made during testing period:

Sampling Performed By:

Nic Baldwin

STACK ANALYSIS - PRE-SAMPLING

Date: 28-Oct-13 Client: NCIA

AECOM's Project No: 60305580 Stack/Duct Description: Hot Air Cooler 1

Fine Particulate (PM10)
Total Particulate Test 1:

Test 2:

		Measurement/Obse	n/ations		
Stack Inte	rnal Dimensions:	Measurement/Obse	Tvations		
Ottook iiito	mai Dimonolono.				
Diameter	1000	mm	Cross Sectional Area	0.79 m ²	2
OR	Length	Width	Cioss Sectional Area	0.79 111	
Length/Wi		WIGHT	Minimum No. of		
Equivalent	•	mm	sampling points=	12	
Equivalent	TOTAL TOTAL	<u>- niiii </u>	Sampling points-		
Distance fi	rom sampling plane to		Total No. of sampling	nointe =	16
	sturbances:		Total No. of Sampling	PM2.5/10=	12
Tour oot an	otarbanocs.		No. of sampling trave		12
Upstream	(m) = 3		sampled =	rses/ports	2
No. Diame	•		Sampleu =	PM2.5/10=	2
l	ostream Disturbance:	Fan	No. of sampling point		2
Downstrea		i ali	traverse/port =	s on each	0
No. Diame			liaverse/port =	PM2.5/10=	8 6
	own Stream Disturbance:	Stook Evit		PIVIZ.5/10-	O
Type of Do	own Stream Disturbance.	Stack Exit	F 1 : 6		
D 141 4		1. 4	Exclusion of any sam		
Position of	f each sampling point, for	each traverse:	numbers - comments	•	
		_			
	A	B	PM10/2.5 A	PM2.5/1	
No.	Distance from wall	S-type Pitot distances		S-Type Pitot di	stances
1	33	3	44	14	
2	105	75	146	116	
3	194	164	296	266	
4	323	293	704	674	
5	677	647	854	824	
6	806	776	956	926	
7	895	865			
8	967	937			
9				<u> </u>	
10			Check of total points	_	
11			minimum, (yes/no) - c	omments:	
12					
13					
14]		
15					
16					
17					
18					
19			General Comments:		
20			Λ -		
	2-1-11-		A T		
Signed: 📆			Checked:		
1			A T	>	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

28-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Hot Air Cooler 1

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

				· · · · · · · · · · · · · · · · · · ·
Sampling time start:	11:00	Sampling port No.:	0	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	11:00	0	20.9	0.0
2	11:01	0	20.9	0.0
3	11:02	0	20.9	0.0
4	11:03	0	20.9	0.0
5	11:04	0	20.9	0.0
6	11:05	0	20.9	0.0
7	11:06	0	20.9	0.0
8	11:07	0	20.9	0.0
	Averages:	0.0 ppm	20.9 %	0.0 %

Moisture content (M3):

0.98

Moisture percentage (M2):

1.60 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	ositions converted to wet basis:			
co:	0.0000 %,(wet)	N ₂ :	77.8 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.6 %,(wet)	
H₂O:	1.60 %(=M2)			
Therefore,	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date: 28-Oct-13 Client: NCIA

AECOM's Project No: 60305580 Stack/Duct Description: Hot Air Cooler 1

Test 1: Fine Particulate (PM10)

Test 2: Total Particulate

Sampling time start:	12:31	Sampling port No.:	0	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)	CO ₂ (%), (dry)
1	12:31	0	20.9	0.0
2	12:32	0	20.9	0.0
3	12:33	0	20.9	0.0
4	12:34	0	20.9	0.0
5	12:35	0	20.9	0.0
6	12:36	0	20.9	0.0
7	12:37	0	20.9	0.0
8	12:38	0	20.9	0.0
	Averages:	0.0 ppn	n 20.9 %	

Moisture content (M3):

0.98 1.65 %

Moisture percentage (M2):

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	ositions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	77.8 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.6 %,(wet)	
H₂O:	1.65 %(=M2)			
Therefore,	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date: 28-Oct-13 Client: NCIA

AECOM's Project No: 60305580 Stack/Duct Description: Hot Air Cooler 1

Test 2:Total Particulate

Time : Page No. :	10:45 1 of 1	Barometric P		1013	hPa
		Pitot Correcti		0.84	3
Sampling Port No:	1 to 2	Stack Gas Density:		1.28	kg/m ³
Pitot Tube Type:	S				(0 °C, Wet, 1 Atm)
		Max.	1		
Sampling Position	Distance	Differential		Max Temp. (Ts)	Corrected Velocity
No.	from far wall	Pressure	Max Temp. °C	K	(Vs) m/s
'	(mm)	ΔP, kilo			((() () ()
		Pascals			
1/1	3	0.265	70.0	343.2	19.2
1/2	75	0.412	78.0	351.2	24.2
1/3	164	0.481	82.0	355.2	26.3
1/4	293	0.441	81.0	354.2	25.1
1/5	647	0.441	84.0	357.2	25.3
1/6	776	0.481	85.0	358.2	26.4
1/7	865	0.451	84.0	357.2	25.5
1/8	937	0.275	82.0	355.2	19.9
2/1	_	0.400	20.0	050.0	-
2/2	3	0.402	83.0	356.2	24.1
2/3	75	0.451	86.0	359.2	25.6
2/3	164	0.422	89.0	362.2	24.9
2/5	293 647	0.412	89.0	362.2	24.6
2/6	776	0.363	89.0	362.2	23.1
2/7	865	0.383 0.343	88.0 88.0	361.2	23.6
2/8	937	0.353	88.0	361.2 361.2	22.4 22.7
210	931	0.333	00.0	301.2	22.1
-	-				
				 -	
	_				
	-	_	-		
	-				
		_			
		-			
			1		
	-				
		-			
	1				
Average			84.1	357.3	23.9

Static Pressure (Dwyer) (Pa): kPa
Static Pressure (U-tube, if required) -20 mm
Absolute pressure in stack (hPa): 1011.04 hPa

A=COM

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date:

28-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack Description No.:

Hot Air Cooler 1

Sample Nozzie No.:

fine5 1 to 2 Sample Nozzle Area (An):

1.73

Sampling Port No.: Page No:

1 of 1

Thimble No: Blank thimble No:

T116

N/A

Time start:

Leak Check (Pre-Sampling)
Meter start: 59.9520 Meter finish: 11:20 Time finish:

59.9520 Meter start: 11:21 Time start:

61.2144 Meter finish: 12:48 Time finish:

61.2144 12:49

x 10⁻⁵m²

Therefore, leakage rate = no leak

L/min Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Leak Check (Post Sampling)

Repeat: Comments:

Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1013 hPa (start);

59.9540

1013 hPa (finish)

Meter start: Meter correction factor (GMf):

Time start: 1.0159

11:25

Sampling	Stopwatch Time at Sampling	Distance from far wall	Isokinetic Flowrate	Meter Inlet	Meter Outlet	Impinger Train Outlet	Flowrate Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:06:00	44	13.8	34.0	30.0		Yes
1/2	0:07:00	146	13.8	34.0	30.0		Yes
1/3	0:06:30	296	13.8	34.0	30.0		Yes
1/4	0:07:00	704	13.8	35.0	30.0		Yes
1/5	0:07:15	854	13.8	35.0	31.0		Yes
1/6	0:06:15	956	13.8	35.0	31.0		Yes
	0.00.45				_		
2/1	0:06:15	44	13.8	36.0	31.0		Yes
2/2	0:07:00	146	13.8	36.0	31.0		Yes
2/3	0:07:00	296	13.8	36.0	31.0		Yes
2/4 2/5	0:06:45	704	13.8	36.0	31.0		Yes
2/5	0:06:30	854	13.8	36.0	32.0		Yes
2/6	0:06:15	956	13.8	36.0	32.0		Yes
-		-	_				
			_				
-					 		
-		-					
		-	-		-		
		-				-	
						-	
					_		_
							
		-			-		
						_	
							
					 		·
			-				
				_			_
-							
					-		
	_						
			-				
					 	-	
Averages				35.3	30.8	no result	
Meter Finish:		61.2100		Time Finish:		12:46	

Meter Finish: Total Condensate collected: 61.2100 0 ml

Silica gel No(s) used:

Z3

STACK ANALYSIS SAMPLING OF TOTAL PARTICULATE

Date: 28-Oct-13

NCIA Client:

AECOM's Project No:

60305580

Stack Description No.:

Hot Air Cooler 1

Sample Nozzle No.:

s2

Sample Nozzle Area (An):

1.26

Sampling Port No.:

1 to 2

Thimble No:

T115

Page No: 1 of 1

Blank thimble No:

N/A

Meter start: Time start:

Leak Check (Pre-Sampling) 279.0281 Meter finish: 11:21 Time finish:

279.0281 Meter start: 11:22 Time start:

Leak Check (Post Sampling)
Meter start: 280,3370 Meter finish:
Time start: 12:50 Time finish:

πο leak

280.3370 12:51

x 10⁻⁵m²

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

1/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments: Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1013 hPa (start); 279.0293

Time start:

1013 hPa (finish)

Meter start: Meter correction factor (GMf):

0.9981

11:25

	Stopwatch						
	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet	Train Outlet	Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:05:00	33	12.6	34.0	30.0		Yes
1/2	0:10:00	105	15.5	34.0	30.0		Yes
1/3	0:15:00	194	16.6	34.0	30.0		Yes
1/4	0:20:00	323	15.9	34.0	30.0		Yes
1/5	0:25:00	677	15.9	34.0	31.0		Yes
1/6	0:30:00	806	16.6	35.0	32.0		Yes
1/7	0:35:00	895	16.0	35.0	32.0		Yes
1/8	0:40:00	967	12.6	35.0	32.0		Yes
2/1	0:45:00	33	15.2	36.0	34.0		Yes
2/2	0:50:00	105	16.0	36.0	34.0		Yes
2/3	0:55:00	194	15.4	36.0	35.0		Yes
2/4	1:00:00	323	15.3	36.0	35.0		Yes
2/5	1:05:00	677	14.3	36.0	35.0		Yes
2/6	1:10:00	806	14.7	36.0	36.0		Yes
2/7	1:15:00	895	13.9	36.0	36.0		Yes
2/8	1:20:00	967	14.1	36.0	36.0		Yes
					1		
	_						
		_ "					
							-
_				i			
i							
							_
						·	
		İ					
Averages				35.2	33.0	no result	

Meter Finish: Total Condensate collected:

0 ml

M99

Silica gel No(s) used:

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date:

28-Oct-13

Client:

NCIA

AECOM's Project No: Stack/Duct Description: 60305580

Hot Air Cooler 1

Test 2:Total Particulate

Time : Page No. :	12:15 1 of 1	Barometric P Pitot Correcti		1013 0.84	hPa
Sampling Port No:	1 to 2	Stack Gas De	ensity:	1.28	kg/m ³
Pitot Tube Type :	S				(0 °C, Wet, 1 Atm)
Sampling Position No.	Distance from far wall (mm)	Max. Differential Pressure ΔP, kilo Pascals	Max Temp. °C	Max Temp. (Ts) K	
1/1	3	0.400	74.0	347.2	23.7
1/2	75	0.471	76.0	349.2	25.8
1/3	164	0.475	77.0	350.2	25.9
1/4	293	0.440	80.0	353.2	25.1
1/5	647	0.442	82.0	355.2	25.2
1/6	776	0.424	82.0	355.2	24.7
1/7	865	0.419	84.0	357.2	24.6
1/8	937	0.287	84.0	357.2	20.4
		0.207	04.0	301.2	20.7
2/1	3	0.257	94.0	367.2	19.5
2/2	75	0.334	100.0	373.2	22.4
2/3	164	0.296	104.0	377.2	21.3
2/4	293	0.384	104.0	377.2	24.2
2/5	647	0.404	104.0	377.2	24.8
2/6	776	0.339	104.0	380.2	22.8
2/7		0.339		373.2	
2/8	865 937	0.295	100.0	373.2	21.1 20.3
270	901	0.275	99.0	312.2	20.3
Average			90.7	363.9	23.2

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa -23 mm 1010.74 hPa

AECOM

STACK ANALYSIS - PM10 CALCULATIONS

Date: AECOM's Project No: 28-Oct-13 60305580 Client: NCIA
Stack/Duct Description: Hot Air Cooler 1 1. Gas Analysis % 0.0 %CO₂ %O₂ %N₂+%CO 20.9 79.1 Fraction Moisture Content, Bws 0.02 M_s= 0.98 2. Molecular Weight of Stack Gas (Dry Basis) Mol. Wt. of Stack Gas (dry) Mol. Wt. of Stack Gas (wet) 3. Absolute Stack Pressure Pascals 101300 101074 in. Hg 29.91 29.84 Barometric Pressure (Pbar) Stack Static Pressure (Pg) Absolute Stack Pressure 29.84 4. Viscosity of Stack Gas °F 195.8 Average Stack Temp.
Average Meter Temperature:
Stack Gas Viscosity 91.0 33.0 213.5 5. Cyclone Flow Rate ft³/min 0.56 m⁸/min 0.0198

6. Nozzle Velocity, Rmin and Rmax

Cyclone Flow Rate

Nazzie Number	Nozzle Diameter	Nozzle	Velocity	Rmin	Rmax	Vmin	Vmin	Vmax	Vmax
	(inches)	ft/sec	m/s	[-]	[-]	ft/sec	m/s	ft/sec	m/s
0	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#D V/0!	#DIV/0!	#DIV/0!	#DIV/0!
1	0.131	100.18	32.97	0.761	1.227	76.25	25.02	122.92	40.33
2	0.159	67.99	22.38	0.728	1.248	49.52	16.25	84.83	27.83
3	0.165	62.60	20.60	0.718	1.254	44.95	14.75	78.48	25.75
4	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0
5	0.185	49.99	16.45	0.681	1.274	34.04	11.17	63.70	20.90
6	0.216	36.63	12.06	0.592	1.315	21.67	7.11	48.19	15.81
7	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0I
8	0.267	23.95	7.88	#NUM!	1.407	11.97	3.93	33.69	11.05
9	0.306	18.34	6.04	#NUM!	1.494	9.17	3.01	27.39	8.99
10	0.339	14.93	4.91	#NUM!	1.581	7.46	2.45	22.39	7.35
11	0.431	9.23	3.04	#NUM!	1.879	4.61	1.51	13.84	4.54
		Nozzle	Nozzłe	Sample					
	Nozzle Diameter	Diameter	Area	Rate					
Selected Nozzle	(inches)	(m)	(m ²)	(L/min)					
5	0.185	0.005	0.000017	14.2					

STACK ANALYSIS - PM10 CALCULATIONS CONTINUED

28-Oct-13 Client: NCIA
60305580 Stack/Duct Description: Hot Air Cooler 1 Date: AECOM's Project No:

7.Sampling Time	Total Run Time	80	Number of points

Velocity Head (pitot)	Vel Head	Sar Root	Dwell time
l Pa	in H20	1	mins
444.39	in H20 1.78	1.34	7.0
444.39 505.22 393.38	2.03	1.42	7.0 7.5
393.38	1.58	1.26	6.6
415.94	1.67	1.42 1.26 1.29 1.39 1.35	6.8
484.61	1.94	1.39	7.4
451.26	1.81	1.35	7.1
341.39	1.37	1.17	6.2
386.51	1.55	1,25	6.6
361.99	1.45	1.21	6.4
376.70	1.51	1.23	6.5
399.27	1.60	1.27	6.5 6.7
252.12	1.01	1,01	5.3
			1
		1	
		İ	
	 		
	+	-	
	+	+	
<u></u>			
ļ		 	-
ļ	+		ļ
		L	
	1		ļ
		<u> </u>	
	1	1	
	1		
	 		
	-	 	
		_	
		L	
		L	
		L	
	1		
	 		
	 		
	 		
-	 	—	
<u> </u>			
<u> </u>	 		
l			
	Average	1.26	80.00
	Square	1.60	

Total time	Full hours	Full	Seconds
min		minutes	
6.0	0	6	0
13.0	0	13	0
19.5	0	19	30
26.5	0	26	30
33.8	0	33	45
40.0	0	40	0
40.0	0	40	
40.0		- 10	
46.3 53.3 60.3	0	46 53	15
53.3	0	53	.15
60.3	1	0	15
67.0	1	7	0
67.0 73.5 79.8	1	0 7 13 19	30
79.8	1	19	45
	T		
			_
			<u></u>
			<u> </u>
		i .	
		i	
			
			-
		<u> </u>	
	L		
		Ī -	
			-
			-
			-
		<u> </u>	
i			
			l
		<u> </u>	
			-

12

Aerodynamic Cut Size (u_{eve})
212.9
PM₁₀ Flow rate at actual cyclone conditions (Q_s)
0.0179

9.2

Actual D₅₀

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

28-Oct-13 Client: NÇIA

60305580 Stack/Duct Description: AECOM's Project No: Hot Air Cooler 1

(A) Sample gas volume at standard conditions

1.2760 m³ Average barometric Metered volume (MV₃):

pressure (PBARO) 33.0 °C 1013 hPa Average gas meter temp. (T_{M2}):

> 306.2 K Average pressure at meter

 $(P_{M.2})$ 1013.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure): 1.1382 m³

(B) PM10 concentration at standard conditions

Blank thimble No.: N/A Blank weight: PM10 Weight 0.0004 g Thimble No. used: T116

0.00040 g Final PM10 Weight (Mp1):

0.00035 g/m3 (0°C, dry gas, PM10 Concentration (C1): $=M_{p1}/MV_4=$

1atm pressure)

;and C2 = 0.35 mg/m3 (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 0.0 %

0.00035 g/m3 (0°C, dry gas, 1atm $= C_a \times 12/CO_2\% =$ Therefore, C_c:

pressure, 12% CO₂)

;and C_{c1} = 0.35 mg/m³ (0°C, dry gas, 1atm

pressure, 12% CO₂)

O2 Basis 7 %

Average O₂%: 20.9 %

 $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 0.049 g/m³ (0°C, dry gas, 1atm pressure, Therefore, C_b:

 O_2)

;and C_{b1} = 49 mg/m3 (0°C, dry gas, 1atm pressure,

> 7% O_2)

(C) Moisture content

Silica Gel Number: **Z**3

14.6 g (from laboratory report) $V_w =$ 0 mL (=grams) (recorded on Volume of Water Vapour Condensed (V_{wc(std)}) = 0.0000

Laboratory Form 108) Volume of Water Vapour Condensed $(V_{wsg(std)}) =$ 0.0195

Therefore, $B_{ws} =$ $(V_{wc(std)}+V_{wsq(std)})$

 $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

1.68 % $B_{ws} =$

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Fine Particulate (PM10)

A=COM

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c):

1.28 kg/m³ (0°C, wet, 1 atm pressure)

(iii) Gas density at stack conditions = (ii) \times (273.2) \times (Ps) (273.2+Ts) (1013.25)

0.966 kg/m³ (stack conditions, wet)

1.29 kg/m³ (0°C, dry, 1 atm pressure)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 24.03 m/s

(ii) Average of post-sampling velocities: 24.19 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and post-sampling velocities (Vs):

N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i) and (ii) alone.)

and (ii) alone:)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A = 18.94 \text{ m}^3/\text{s} \text{ (stack conditions)}$

Qstd = Qstack x \underline{Ps} x $\underline{(Tstd)}$ x $\underline{(100 - B_w)}$ (Pstd) (Ts) 100

Qstd = $14.1 \text{ m}^3/\text{s} (0^{\circ}\text{C}, \text{dry gas}, 1 \text{ atm pressure})$

(G) Mass Emission Rate

AECOM

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

28-Oct-13

Client: **NCIA**

AECOM's Project No:

60305580 Stack/Duct Description:

Hot Air Cooler 1

(A) Sample gas volume at standard conditions

Metered volume (MV₃):

1.3020 m³

Average barometric

Average gas meter temp. $(T_{M,2})$:

34.1 °C

pressure (P_{BARO})

1013 hPa

307.3 K

Average pressure at meter $(P_{M,2})$ 1013.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure):

1.1572 m³

(B) Total Particulate concentration at standard conditions

Blank thimble No.:

N/A

Blank weight:

Thimble No. used:

T115

Total Particulate Weight

0.0007 g

Final Total Particulate Weight (Mp1): Total Particulate Concentration (C1):

0.00070 g $=M_{p1}/MV_4=$

0.0006 g/m3 (0°C, dry gas,

1atm pressure)

;and $C_2 =$

0.6 mg/m³ (0°C, dry gas. 1atm pressure)

12 %

CO₂ Basis Average CO₂%:

Therefore, C_c:

 $= C_a \times 12/CO_2\% =$

0.0006 g/m³ (0°C, dry gas, 1atm

;and C_{c1} =

pressure, 12% CO₂) 0.6 mg/m³ (0°C, dry gas, 1atm

pressure, 12% CO₂)

O₂ Basis

7 %

Average O₂%:

20.9 %

0.0 %

Therefore, C_b:

=C_a x (21 - O_{2ref}%)/(21 - O_{2mea}%)

0.084 g/m³ (0°C, dry gas, 1atm pressure,

 O_2)

;and C_{b1} =

84 mg/m³ (0°C, dry gas, 1atm pressure,

0 mL (=grams)

(recorded on

7% O_2)

(C) Moisture content

Silica Gel Number:

M99

14.3 g (from laboratory report)

Volume of Water Vapour Condensed (V_{wc(std)}) = Volume of Water Vapour Condensed (V_{wsg(std)}) = 0.0000 0.0191

Laboratory Form 108)

Therefore, B_{ws} =

 $(V_{wc(std)} + V_{wsq(std)})$

 $(V_{wc(std)}+V_{wsg(std)}+V_{m(std)})$

 $B_{ws} =$

1.62 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Total Particulate

(D) Gas Composition and Density (Re-calculation)

1.28 kg/m³ (from Laboratory Form 107) (i) Initial gas density for sampling:

(ii) Re-calculated gas density based on moisture

1.28 kg/m³ (0°C, wet, 1 atm pressure) content in (c): 1.29 kg/m³ (0°C, dry, 1 atm pressure)

(ii) \times (273.2) \times (iii) Gas density at stack conditions = (Ps) (273.2+Ts) (1013.25)

> 0.968 kg/m3 (stack conditions, wet) =

> > 23.58 m/s (stack conditions, wet)

N/A m/s (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 23.93 m/s 23.24 m/s (ii) Average of post-sampling velocities:

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs):

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

18.52 m³/s (stack conditions) Qstack = Vs x A =

<u>Ps</u> x (Tstd) × (100 - B_w) Qstd = Qstack x (Pstd) (Ts)

13.8 m³/s (0°C, dry gas, 1 atm pressure) Qstd =

(G) Mass Emission Rate

EMISSION MONITORING RESULTS, HOT AIR COOLER 1 NCIA

28-Oct-13 FINE PARTICULATE (PM10) TOTAL PARTICULATE

Sampling Conditions:		
Stack internal diameter at test location	1000 mm	
Stack gas temperature (average)	87.7 °C	360.9 K
Stack pressure (average)	1011 hPa	
Stack gas velocity (average, stack conditions)	24 m/s	
Stack gas flowrate (stack conditions)	19 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	14 m ³ /s	
Fine Particulate (PM10) Testing	<u> </u>	
Test Period	11:25 -	12:46
Fine Particulate (PM10) Mass	0.4 mg	
Gas Volume Sampled	1.14 m ³	_
Fine Particulate (PM10) Emission*1	0.35 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	4.9 mg/s	
Regulatory Limit	N/A	
Total Particulate Testing		
Test Period	11:25 -	12:46
Total Particulate Mass	0.7 mg	
Gas Volume Sampled	1.16 m ³	
Total Particulate Emission*1	0.6 mg/m ³	
Total Particulate Mass Emission Rate*2	8.3 mg/s	
Regulatory Limit	5 mg/m ³	
Moisture Content (%)	1.6	
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

AECOM

NCIA

AECOM's Project Number: 60305580

Emission Source: Hot Air Cooler 2

Date Sampled: 28-Oct-13

ANALYTE(S) METHOD

Fine Particulate (PM10) NSW EPA OM - 5

Total Particulate NSW EPA TM - 15

Observations made during testing period:

Sampling Performed By:

Nic Baldwin

Chris Burns

STACK ANALYSIS - PRE-SAMPLING

Date: 28-Oct-13 Client: NCIA

AECOM's Project No: 60305580

Stack/Duct Description: Hot Air Cooler 2
Test 1: Fine Particulate (PM10)
Test 2: Total Particulate

		M				
Stack Inte	rnal Dimensions:	Measurement/Obse	rvations			
Stack inte	mai Dimensions.					
Diameter OR	1200 Length	mm Width	Cross Sectional Area	1.13 m ²		
Length/Wi			Minimum No. of			
Equivalent	t Diameter N/A	mm	sampling points=	12		
			, <u> </u>			
Distance f	rom sampling plane to		Total No. of sampling	points =	16	
nearest dis	sturbances:			PM2.5/10=	12	
			No. of sampling travel	rses/ports		
Upstream			sampled =		2	
No. Diame				PM2.5/10=	2	
	ostream Disturbance:	fan	No. of sampling points	s on each		
Downstrea			traverse/port =		8	
No. Diame				PM2.5/10=	6	
Type of Do	own Stream Disturbance:	Stack exit				
			Exclusion of any samp	ple point		
Position of	f each sampling point, for	each traverse:	numbers - comments:			
	A	В	PM10/2.5 A	PM2.5/10		
No.	Distance from wall	S-type Pitot distances	Distance from wall	S-Type Pitot dis	tances	
1	40	10	53	23		
2	126	96	175	145		
3	233	203	355	325		
4	388	358	845	815	_	
5 6	812 967	782	1025	995		
7	1074	937	1147	1117		
8	1160	1044				
9	1160	1130				
10			Charles Added a sind a			
11			Check of total points a			
12			minimum, (yes/no) - c	omments:		
13						
14						
15						
16						
17						
18						
19			General Comments:			
20			General Comments:			
	7-11		1	>		
Signed:!	No like		Checked:			
oigneu:	The state of the s		Onecked			

STACK ANALYSIS - GAS COMPOSITION AND DENSITY PRE-SAMPLING

Date:

28-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Hot Air Cooler 2

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Sampling time start:	12:05	Sampling port No.:	0		<u></u>	
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (dry)		CO ₂ (%), (dry)	
1	12:05	0	20.9		0.0	
2	12:06	0	20.9		0.0	
3	12:07	0	20.9		0.0	
4	12:08	0	20.9		0.0	
5	12:09	0	20.9		0.0	
6	12:10	0	20.9		0.0	
7	12:11	0	20.9		0.0	
8	12:12	0	20.9		0.0	
	Averages:	0.0 pr	om 20.9	%	0.0	%

Moisture content (M3):

0.98 2.00 %

Moisture percentage (M2):

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	ositions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	77.5 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.5 %,(wet)	
H ₂ O:	2.00 %(=M2)			
Therefore,	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

STACK ANALYSIS - GAS COMPOSITION AND DENSITY POST-SAMPLING

Date:

28-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Hot Air Cooler 2

Test 1:

Fine Particulate (PM10)

Test 2:

Total Particulate

Sampling time start:	14:10	Sampling port No.:	0			
Measurement No.	Time sampled	CO (ppm). (dry)	O ₂ (%), (d	ry)	CO ₂ (%), (dry)	
1	14:10	0	2	0.9	0.0	
2	14:11	0	2	0.9	0.0	
3	14:12	0	2	0.9	0.0	
4	14:13	0	2	0.9	0.0	
5	14:14	0	2	0.9	0.0	
6	14:15	0	2	0.9	0.0	
7	14:16	0	2	0.9	0.0	
8	14:17	0	2	0.9	0.0	
	Averages:	0.0 pj	om 20.9	%	0.0	%

Moisture content (M3):

0.99

Moisture percentage (M2):

1.20 %

Measurements

CO:	0.0000 %,(dry)	N ₂ :	79.1 %,(dry)	
CO ₂ :	0.0 %,(dry)	O ₂ :	20.9 %,(dry)	
Gas Comp	positions converted to wet basis:			
CO:	0.0000 %,(wet)	N ₂ :	78.1 %,(wet)	
CO ₂ :	0.0 %,(wet)	O ₂ :	20.6 %,(wet)	
H ₂ O;	1.20 %(=M2)			
Therefore,	stack gas density (GD) =	1.28 kg/m ³	(0°C, wet, 1 atm pressure)	
Therefore,	stack gas density (GD) =	1.29 kg/m ³	(0°C, dry, 1 atm pressure)	

Stack Analysis - Pre Sampling Pitot Tube and Temperature Traverses

Date:

28-Oct-13

Client:

NCIA

AECOM's Project No:

60305580

Stack/Duct Description:

Hot Air Cooler 2

Test 2:Total Particulate

Time : Page No. :	11:47 1 of 1	Barometric P Pitot Correcti		1013 0.84	hPa
Sampling Port No:	1 to 2				1 / 3
		Stack Gas Do	ensity:	1.28	kg/m ³
Pitot Tube Type :	S		-	, 	(0 °C, Wet, 1 Atm)
		Max.			
Sampling Position	Distance	Differential		Max Temp. (Ts)	Corrected Velocity
No.	from far wall	Pressure	Max Temp. °C	K	(Vs) m/s
	(mm)	ΔP, kilo		"	((() () ()
		Pascals			
1/1	10	0.242	88.0	361.2	18.8
1/2	96	0.262	92.0	365.2	19.7
1/3	203	0.296	94.0	367.2	21.0
1/4	358	0.245	94.0	367.2	19.1
1/5	782	0.256	94.0	367.2	19.5
1/6	937	0.207	93.0	366.2	17.5
1/7	1044	0.174	92.0	365.2	16.0
1/8	1130	0.158	91.0	364.2	15.3
2/1	10	0.200	92.0	365.2	17.2
2/2	96	0.257	93.0	366.2	19.5
2/3	203	0.194	94.0	367.2	17.0
2/4	358	0.229	95.0	368.2	18.5
2/5	782	0.234	96.0	369.2	18.7
2/6	937	0.276	98.0	371.2	20.4
2/7	1044	0.273	97.0	370.2	20.2
2/8	1130	0.186	95.0	368.2	16.7
		_			
i					
<u> </u>					
<u> </u>					
		-			
Average			93.6	366.8	18.4

Static Pressure (Dwyer) (Pa): Static Pressure (U-tube, if required) : Absolute pressure in stack (hPa) : kPa -15 mm 1011.53 hPa

AECOM

STACK ANALYSIS

SAMPLING OF FINE PARTICULATE (PM10)

Date: 28-Oct-13

NCIA Client:

AECOM's Project No:

60305580

Stack Description No.:

Hot Air Cooler 2

Sample Nozzle No.:

fine5 1 to 2 Sample Nozzle Area (An): Thimble No:

1.73

Sampling Port No.: Page No:

1 of 1

Blank thimble No:

T109 N/A

Leak Check (Pre-Sampling) Meter start: Time start:

61.2174 Meter finish: 12:57 Time finish:

61.2174 Meter start: 12:58 Time start:

Leak Check (Post Sampling)
Meter start: 62.5838 Meter finish: 14:26 Time finish:

62.5838 14:27

x 10⁻⁵m²

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

no leak **∠**min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Repeat: Comments: Repeat: Comments:

Sampling Record Table

Barometric Pressure:

Total Condensate collected:

1013 hPa (start); 61.2228

1013 hPa (finish)

GARY

Silica gel No(s) used:

Meter start: Meter correction factor (GMf):

Time start: 1.0159

13:00

	Stopwatch						
	Time at	Distance	Isokinetic			Impinger	Flowrate
Sampling	Sampling	from far wall	Flowrate	Meter Inlet	Meter Outlet		Attained
Position No.	Position	(mm)	(L/min)	Temp. (°C)	Temp. (°C)	Temp (°C)	(Y/N)
1/1	0:07:30	53	13.9	36.0	33.0		Yes
1/2	0:07:15	175	13.9	36.0	33.0		Yes
1/3	0:06:15	355	13.9	36.0	33.0		Yes
1/4	0:07:00	845	13.9	36.0	34.0		Yes
1/5	0:06:15	1025	13.9	36.0	34.0		Yes
1/6	0:05:45	1147	13.9	36.0	34.0		Yes
						Ĺ,	
2/1	0:06:15	53	13.9	37.0	34.0		Yes
2/2	0:06:30	175	13.9	37.0	35.0		Yes
2/3	0:06:15	355	13.9	37.0	35.0		Yes
2/4	0:07:00	845	13.9	37.0	35.0		Yes
2/5	0:07:15	1025	13.9	37.0	35.0		Yes
2/6	0:06:45	1147	13.9	37.0	35.0		Yes
_							
				-			
							<u> </u>
_							
	-		-		· · · · · ·		-
_							
						-	
							
			_				_
					-		
				_			
.							
		_					
				_			
Averages				36.5	34.2	no result	

-2 ml

STACK ANALYSIS **SAMPLING OF TOTAL PARTICULATE**

Date: 28-Oct-13

NCIA Client:

AECOM's Project No:

60305580

Stack Description No.:

Hot Air Cooler 2

52 1 to 2

Sample Nozzle Area (An): Thimble No:

1.26

Sample Nozzle No.: Sampling Port No.: Page No:

1 of 1

T112

Blank thimble No:

N/A

Leak Check (Pre-Sampling)

280.3395 Meter finish: 12:56 Time finish:

280.3395 Meter start: 12:57 Time start:

281.2582 Meter finish: 14:27 Time finish:

281.2582 14:28

x 10⁻⁵m²

Therefore, leakage rate = no leak

L/min

Therefore, leakage rate =

no leak

L/min

(>0.1 l/min. is unacceptable)

(>0.1 l/min. is unacceptable)

Leak Check (Post Sampling)

Repeat:

Comments:

Meter start:

Time start:

Repeat: Comments:

Sampling Record Table

Barometric Pressure:

1013 hPa (start);

1013 hPa (finish)

Meter start:

280.3410

Time start:

13:00

Meter correction factor (GMf):

0.9981

Stopwatch Impinger Time at Distance Isokinetic Flowrate Meter Outlet Train Outlet Sampling Sampling from far wall Flowrate Meter Inlet Attained Position No Position (mm) (L/min) Temp. (°C) Temp. (°C) Temp (°C) (Y/N) 1/1 0:05:00 11.7 40 36.0 Yes 34.0 1/2 0:10:00 126 12.2 36.0 Yes 34.0 0:15:00 1/3 233 12.9 36.0 34 0 Yes 1/4 0:20:00 388 11.7 36.0 34.0 Yes 1/5 0:25:00 812 36.0 12.0 34.0 Yes 1/6 0:30:00 967 10.8 36.0 34.0 Yes 1/7 0:35:00 1074 9.9 37.0 36.0 Yes 1/8 0:40:00 1160 9.5 37.0 36.0 Yeş 2/1 0:45:00 40 10.6 37.0 36.0 Yes 2/2 0:50:00 126 12.0 38.0 36.0 Yes 2/3 233 36.0 0:55:00 10.5 38.0 Yes 2/4 388 1:00:00 11.3 37.0 Yes 38.0 2/5 1:05:00 812 11.4 38.0 37.0 Yes 2/6 1:10:00 967 12 4 38.0 37.0 Yes 2/7 1:15:00 1074 12.3 38.0 37.0 Yes 2/8 1:20:00 1160 10.2 38.0 37.0 Yes Averages 35.6 no result 14:22

Meter Finish: Total Condensate collected:

281,2570 -2 ml Time Finish:

Silica gel No(s) used:

Z12

Stack Analysis - Post Sampling Pitot Tube and Temperature Traverses

Date: 28-Oct-13

Client: NCIA

AECOM's Project No: 60305580 Stack/Duct Description: Hot Air Cooler 2

Test 2:Total Particulate

Time :	14:01	Barometric P	ressure :	1013	hPa
Page No. :	1 of 1	Pitot Correcti	on Factor :	0.84	
Sampling Port No: 1 to 2		Stack Gas De	ensity:	1.28	kg/m ³
Pitot Tube Type:	S		•		(0 °C, Wet, 1 Atm)
		Max.			(0 0) (700, 17)
	Distance	Differential			
Sampling Position	from far wall	Pressure	Max Temp. °C	Max Temp. (Ts)	
No.	(mm)	ΔP, kilo	IVIAX Temp. O	K	(Vs) m/s
	()	Pascals			
1/1	10	0.261	79.0	352.2	19.3
1/2	96	0.282	80.0	353.2	20.0
1/3	203	0.307	82.0	355.2	21.0
1/4	358	0.212	82.0	355.2	17.4
1/5	782	0.178	80.0	353.2	15.9
1/6	937	0.213	80.0	353.2	17.4
1/7	1044	0.227	80.0	353.2	18.0
1/8	1130	0.160	77.0	350.2	15.0
2/1	10	0.221	85.0	358.2	17.9
2/2	96	0.208	88.0	361.2	17.4
2/3	203	0.249	90.0	363.2	19.1
2/4	358	0.234	95.0	368.2	18.7
2/5	782	0.248	95.0	368.2	19.2
2/6	937	0.290	96.0	369.2	20.8
2/7	1044	0.255	96.0	369.2	19.5
2/8	1130	0.268	91.0	364.2	19.8
		-			
Average			86.0	359.2	18.5

Static Pressure (Dwyer) (Pa): kPa
Static Pressure (U-tube, if required): -10 mm
Absolute pressure in stack (hPa): 1012.02 hPa

A=COM

STACK ANALYSIS - PM10 CALCULATIONS

28-Oct-13 60305580 Client: NCIA Stack/Duct Description: Hot Air Cooler 2 Date: AECOM's Project No: 1. Gas Analysis % 0.0 %CO₂ %O₂ %N₂+%CO 20.9 79.1 Fraction Moisture Content, Bws 0.01 M₃= 0.99 2. Molecular Weight of Stack Gas (Dry Basis) Mol. Wt. of Stack Gas (dry) Mol. Wt. of Stack Gas (wet) 28.84 28.62 3. Absolute Stack Pressure Pascals 101300 101202 in. Hg 29.91 29.88 Barometric Pressure (Pbar) Stack Static Pressure (Pg) Absolute Stack Pressure 29.88 4. Viscosity of Stack Gas °C 86.4 °F 187.6 Average Stack Temp.
Average Meter Temperature:
Stack Gas Viscosity 35.3

ft³/min 0.55

211.7

m³/min 0.0195

6. Nozzle Velocity, Rmin and Rmax

5. Cyclone Flow Rate

Cyclone Flow Rate

Nozzle Number	Nozzle Diameter	Nozzle	Velocity	Rmin	Rmax	Vmin	Vmin	Vmax	Vmax
	(inches)	ft/sec	m/s	[-]	[-]	ft/sec	m/s	ft/sec	m/s
0	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/01	#DIV/0!	#DIV/0!
11	0.131	98.97	32.58	0.761	1.227	75.32	24.71	121.44	39.84
2.	0.159	67.17	22.11	0.728	1.248	48.91	16.05	83.81	27.50
3	0.165	61.84	20.36	0.718	1.254	44.39	14.56	77.54	25.44
4	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/01	#DIV/0I	#DIV/01	#DIV/0!	#DIV/0!
5	0.185	49.38	16.25	0.681	1.275	33.61	11.03	62.94	20.65
6	0.216	36.19	11.91	0.591	1.316	21.38	7.01	47.62	15.62
7	0.000	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0I	#DIV/0!	#DIV/0!
8	0.267	23.66	7.79	#NUM!	1.408	11.83	3.88	33.30	10.93
9	0.306	18.11	5.96	#NUM!	1.495	9.06	2.97	27.08	8.68
	0.339	14.75	4.85	#NUMI	1.583	7.37	2.42	22.12	7.26
11	0.431	9.11	3.00	#NUMI	1.880	4.56	1.50	13.67	4.49
		Nozzle	Nozzle	Sample					
	Nozzle Diameter	Diameter	Area	Rate					
Selected Nozzle	(inches)	(m)	(m ²)	(L/min)					
5	0.185	0.005	0.000017	14.5					

L/min 19.54

L/s 0.33

STACK ANALYSIS - PM10 CALCULATIONS CONTINUED

 28-Oct-13
 Client:
 NCIA

 60305580
 Stack/Duct Description:
 Hot Air Cooler 2
 Date: AECOM's Project No:

7 F F T'	T-4-I D T(N
7.Sampling Time	Total Run Time	60	Number of points

Velocity Head (pitot) Pa	Vel Head in H20		Dwell time mins
311.96	1.25	1.12	7.5
249.17	1.00	1.00	6.7
257.02	1.03	1.02	6.8
212.88	0.85	0.92	6.2
224.65	0.90	0.02	6.4
224.03		0.95	0.4
218.76	0.88	0.94	6.3
			ļ <u>. </u>
211.90	0.85	0.92	6.2
195.22	0.78	0.89	6.0
275.66	1.11	1.05	7.1
311.96	1.25	1,12	7.5
273.70	1,10	1.05	7.1
213.70	1,10	1,03	7.1
209.93	0.84	0.92	6.2
	ļ		
			I
	·		
	· · ·	 	
	 		
	1	1	
	<u> </u>	1	
	+	 	-
	+	-	-
	 	ļ	
			L
		1	
	+		
	+		
	•		
	l	_	
		1	
	1		
	ļ -		
			
	L		
	 		
	 		
	 		
	 		
	ļ		
	Average	0.99	80.00
	Square		

12			
Total time	Full hours	Full	Seconds
min		minutes	
7.5	0	7	30
14.8	0	14	45
min 7.5 14.8 21.0 28.0 34.3 40.0	0	14 21 28	0
28.0	0	28	0
34.3	0	34	15
40.0	0	40	0
10.0		- 70	
46.3	0	46	15
52.8	0	52	15 45
59.0	0	59	0
25.0	1	59	0
66.0		6	15
73.3	1	13	15
80.0	1	20	0
 			
		_	
		_	
		-	
		L <u>.</u>	
			I
		1	
		ì	
<u> </u>			-
	-		
		i	
		<u> </u>	
			
			\vdash
			\vdash
		-	\vdash
			\vdash
			\vdash
			\vdash
			
			-
ļ ļ			\vdash

Aerodynamic Cut Size $(u_{\rm cw})$ 210.4 PM₁₀ Flow rate at actual cyclone conditions $({\bf Q_s})$ 0.0192 Actual D₅₀

STACK ANALYSIS - FINAL CALCULATIONS

Fine Particulate (PM10)

(Calculations performed in accordance with relevant test method as defined on cover page)

Date: 28-Oct-13 Client: NCIA

AECOM's Project No: 60305580 Stack/Duct Description: Hot Air Cooler 2

(A) Sample gas volume at standard conditions

Metered volume (MV₃): 1.3818 m³ Average barometric

Average gas meter temp. (T_{M2}): 35.3 °C pressure (P_{BARO}) 1013 hPa

308.5 K Average pressure at meter

(P_{M.2}) 1013.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

1 atm pressure): 1,2234 m³

(B) PM10 concentration at standard conditions

Blank thimble No.: N/A Blank weight: g
Thimble No. used: T109 PM10 Weight 0.0003 g

Final PM10 Weight (Mp1): 0.00030 g

PM10 Concentration (C1): $= M_{p1}/MV_4 = 0.00025 \text{ g/m}^3 \text{ (0°C, dry gas, }$

1atm pressure)

;and C_2 = 0.25 mg/m³ (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 0.0 %

Therefore, C_c : = $C_a \times 12/CO_2\% = 0.00025 \text{ g/m}^3 (0^{\circ}\text{C, dry gas, 1atm})$

pressure, 12% CO₂)

;and $C_{ci} = 0.25 \text{ mg/m}^3 (0^{\circ}\text{C, dry gas, 1atm})$

pressure, 12% CO₂)

O₂ Basis 7 %

Average O₂%: 20.9 %

Therefore, C_b : = $C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 0.035 g/m³ (0°C, dry gas, 1atm pressure,

7% O₂)

;and $C_{b1} = 35 \text{ mg/m}^3 (0^{\circ}\text{C, dry gas, 1atm pressure,})$

7% O₂)

(C) Moisture content

Silica Gel Number: GARY

 V_v = 12.6 g (from laboratory report) V_w = -2 mL (=grams) Volume of Water Vapour Condensed ($V_{wc(std)}$) = -0.0027 (recorded on

Volume of Water Vapour Condensed (V_{wsg(std)}) = 0.0168 Laboratory Form 108)

Therefore, $B_{ws} = \frac{(V_{wo(std)} + V_{weq(std)})}{(V_{wo(std)} + V_{weq(std)})}$

 $(V_{wc(std)} + V_{wsg(std)} + V_{m(std)})$

B_{ws} = 1.14 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Fine Particulate (PM10)

AECOM

(D) Gas Composition and Density (Re-calculation)

(i) Initial gas density for sampling: 1.28 kg/m³ (from Laboratory Form 107)

(ii) Re-calculated gas density based on moisture content in (c):

1.27 kg/m³ (0°C, wet, 1 atm pressure)
1.29 kg/m³ (0°C, dry, 1 atm pressure)

(iii) Gas density at stack conditions = $(ii) \times \underbrace{(273.2)}_{\text{Z}} \times \underbrace{(Ps)}_{\text{(273.2+Ts)}}$ (1013.25)

= 0.954 kg/m³ (stack conditions, wet)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 18.95 m/s

(ii) Average of post-sampling velocities: 18.84 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and postsampling velocities (Vs):

18.90 m/s (stack conditions, wet)
N/A m/s (stack conditions, wet)

sampling velocities (Vs): (Note: (Vs) is from all individual data, not from (i) and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

Qstack = $Vs \times A = 21.38 \text{ m}^3/\text{s} \text{ (stack conditions)}$

Qstd = Qstack x \underline{Ps} x $\underline{(Tstd)}$ x $\underline{(100 - B_{w})}$ (Pstd) (Ts) 100

Qstd = $15.9 \text{ m}^3/\text{s} (0^{\circ}\text{C}, \text{dry gas}, 1 \text{ atm pressure})$

(G) Mass Emission Rate

STACK ANALYSIS - FINAL CALCULATIONS

Total Particulate

(Calculations performed in accordance with relevant test method as defined on cover page)

28-Oct-13 Client: **NCIA**

AECOM's Project No: 60305580 Stack/Duct Description: Hot Air Cooler 2

(A) Sample gas volume at standard conditions

0.9143 m³ Metered volume (MV₃): Average barometric

pressure (PBARO) Average gas meter temp. (T_{M,2}): 36.3 °C 1013 hPa

> 309.5 K Average pressure at meter

> > $(P_{M,2})$ 1013.00 hPa

Sample gas volume (MV₄); (0°C, dry gas,

0.8069 m³ 1 atm pressure):

(B) Total Particulate concentration at standard conditions

Blank thimble No .: N/A Blank weight: Total Particulate Weight Thimble No. used: T112 0.0004 g

Final Total Particulate Weight (Mp1): 0.00040 g

Total Particulate Concentration (C1): 0.0005 g/m3 (0°C, dry gas, $=M_{p1}/MV_4=$

1atm pressure)

;and C₂ = 0.5 mg/m³ (0°C, dry gas, 1atm pressure)

CO₂ Basis 12 %

Average CO₂%: 0.0 %

Therefore, C_c: $= C_a \times 12/CO_2\% =$ 0.0005 g/m3 (0°C, dry gas, 1atm

pressure, 12% CO₂)

;and $C_{c1} =$ 0.5 mg/m³ (0°C, dry gas, 1atm

pressure, 12% CO₂)

7%

 O_2)

O₂ Basis 7 %

Average O₂%: 20.9 %

Therefore, C_h: $=C_a \times (21 - O_{2ref}\%)/(21 - O_{2mea}\%)$ 0.07 g/m³ (0°C, dry gas, 1atm pressure.

> 7% O_2)

;and C_{b1} = 70 mg/m³ (0°C, dry gas, 1atm pressure,

(C) Moisture content

Silica Gel Number: Z12

V., = 9.7 g (from laboratory report) -2 mL (=grams) Volume of Water Vapour Condensed (Vwc(std)) = (recorded on -0.0027

Laboratory Form 108)

Volume of Water Vapour Condensed ($V_{wsg(std)}$) = 0.0129

Therefore, $B_{ws} =$ $(V_{wc(std)} + V_{wsg(std)})$

 $(V_{wc(std)}+V_{wsg(std)}+V_{m(std)})$

B_{ws} = 1.26 %

STACK ANALYSIS - FINAL CALCULATIONS CONTINUED

Total Particulate

(D) Gas Composition and Density (Re-calculation)

1.28 kg/m³ (from Laboratory Form 107) (i) Initial gas density for sampling:

(ii) Re-calculated gas density based on moisture 1.27 kg/m³ (0°C, wet, 1 atm pressure) content in (c):

(iii) Gas density at stack conditions = (ii) x (273.2) x (Ps) (273.2+Ts) (1013.25)

> 0.954 kg/m³ (stack conditions, wet) =

1.29 kg/m³ (0°C, dry, 1 atm pressure)

(E) Gas Velocities

(i) Average of pre-sampling velocities: 18.44 m/s

(ii) Average of post-sampling velocities: 18.53 m/s

(iii) Average of while-sampling velocities: N/A m/s

(iv) Overall average of pre-sampling and post-18,48 m/s (stack conditions, wet) sampling velocities (Vs): N/A m/s (stack conditions, wet)

(Note: (Vs) is from all individual data, not from (i)

and (ii) alone.)

(F) Volumetric Flowrates (Reference Method US-EPA Method 2, NSW-EPA TM-2)

20.90 m³/s (stack conditions) Qstack = Vs x A =

<u>Ps</u> x (Tstd) × (100 - B_w) Qstd = Qstack x (Pstd) (Ts) 100

15.5 m³/s (0°C, dry gas, 1 atm pressure) Qstd =

(G) Mass Emission Rate

EMISSION MONITORING RESULTS, HOT AIR COOLER 2 NCIA

28-Oct-13 FINE PARTICULATE (PM10) TOTAL PARTICULATE

Sampling Conditions:		
Stack internal diameter at test location	1200 mm	
Stack gas temperature (average)	90.0 °C	363.2 K
Stack pressure (average)	1012 hPa	
Stack gas velocity (average, stack conditions)	19 m/s	
Stack gas flowrate (stack conditions)	21 m ³ /s	
Stack gas flowrate (0°C, dry gas, 1 atm pressure)	16 m ³ /s	
Fine Particulate (PM10) Testing		
Test Period	13:00 =	14:22
Fine Particulate (PM10) Mass	0.3 mg	
Gas Volume Sampled	1.22 m ³	
Fine Particulate (PM10) Emission*1	0.25 mg/m ³	
Fine Particulate (PM10) Mass Emission Rate*2	4 mg/s	
Regulatory Limit	N/A	
Total Particulate Testing		
Test Period	13:00 -	14:22
Total Particulate Mass	0.4 mg	
Gas Volume Sampled	0.807 m ³	
Total Particulate Emission*1	0.5 mg/m ³	
Total Particulate Mass Emission Rate*2	7.8 mg/s	
Regulatory Limit	5 mg/m ³	
Moisture Content (%)	1.3	
Gas Density (dry at 1 atmosphere)	1.29 kg/m ³	
Dry Molecular Weight	28.8 g/g-mole	
Notes *1 Emission concentration at Standard conditions of 0°C 1 atm. document		

Notes *1 Emission concentration at Standard conditions of 0°C, 1 atm, dry gas

^{*2} Mass emission rate determined from pre and post test sampling flow measurements and the respective test moisture content. See Q_{std} in field sheets and final calculations "Stack Analysis - Final Calculations" for each test.

Appendix B

Laboratory Analytical Reports (30 pages)

Appendix B Laboratory Analytical Reports (30 pages)

Phone: 02 49677880

STACK EMISSION - MOISTURE REPORT

Origin:

AECOM - Newcastle

Report:

5399-0-M

Page 1 of 2

Project:

60305580

Description: Stack Emission Samples

Date:

11-Nov-13

Received: 06-Nov-13

Report To:

Colin Clarke

Copy to:

FILE

17 Warabrook Blvd, Warabrook NSW 2304

Jar ID	Moisture (g)	
B66	6.3	
F24	8.6	
FA6	9.6	
GARY	12.6	
M99	14.3	
P22	8.9	
P27	7.7	
P38	11.5	
P40	9.6	
P6	8.3	
Z12	9.7	
Z13	7.9	
Z15	7.3	
Z16	8.2	
Z18	6.7	
Z2	8.7	

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025

Reported By:

Belinda Evans

Determined in Accordance With: Moisture content in stack gases by gravimetric using in-house M301

Phone: 02 49677880

STACK EMISSION - MOISTURE REPORT

Origin:

AECOM - Newcastle

Report:

5399-0-M

Page 2 of 2

Project:

60305580

Description: Stack Emission Samples

Date:

11-Nov-13

Received: 06-Nov-13

Report To:

Colin Clarke

Copy to:

FILE

17 Warabrook Blvd, Warabrook NSW 2304

Jar ID	Moisture (g)
Z3	14.6
Z6	7.0

Reported By:

Belinda Evans

Determined in Accordance With: Moisture content in stack gases by gravimetric using in-house M301

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025

Phone: 02 49677880

STACK EMISSION - PARTICULATES REPORT

Origin:

AECOM - Newcastle

Report:

5399-0-P

Page 1 of 2

Project:

60305580

Description: Stack Emission Samples

Date:

11-Nov-13

Received: 06-Nov-13

Report To:

Colin Clarke

Copy to:

FILE

17 Warabrook Blvd, Warabrook NSW 2304

Thimble ID		Volume (mL)	Total Particulate Matter (g)
T104	Filter	54	0.0083
T106	Filter	4	0.0043
T109	Filter	3	0.0003
T110	Filter	9	0.0027
T112	Filter	2	0.0004
T115	Filter	*	0.0007
T116	Filter	æ	0.0004
T117	Filter		0.0006
T118	Filter	2	0.0085
T119	Filter	\$	0.0005
T127	Filter	-	0.0004
T128	Filter	-	<0.0002
T131	Filter	<u> </u>	0.0004
T132	Filter	2	0.0008
T134	Filter	*	0.0004
Т136	Filter	-	0.0011

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025

Note: 1. Sampled by Client

Reported By:

Belinda Evans

Determined in Accordance With: Particulate matter - total in stack gases by gravimetric using in-house M300

Phone: 02 49677880

STACK EMISSION - PARTICULATES REPORT

Origin:

AECOM - Newcastle

Report:

5399-0-P

Page 2 of 2

Project:

Report To:

60305580

Description:

Stack Emission Samples

Date:

11-Nov-13

Received: 06-Nov-13

Colin Clarke

Copy to:

FILE

17 Warabrook Blvd, Warabrook NSW 2304

Thimble ID		Volume (mL)	Total Particulate Matter (g)
T137	Filter	-	0.0004
T138	Filter	-	0.0010

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025

Note: 1. Sampled by Client

Reported By:___

Belinda Evans

Determined in Accordance With: Particulate matter - total in stack gases by gravimetric using in-house M300

CERTIFICATE OF ANALYSIS

Page 1 of 4	Laboratory Environmental Division Newcastle	Contact Peter Keyte	Address 5/585 Maitland Road Mayfield West NSW Australia 2304		E-mail peter keyte@als.com.au	Telephone 61-2-4968-9433	Facsimile +61-2-4968 0349	QC Level NEPM 2013 Schedule B/3) and ALS OCS3 requirement		Date Samples Received : 04-FEB-2014	Issue Date 11-FEB-2014		No. of samples received 9	No. of samples analysed ; 9
EN1400365	AECOM Australia Pty Ltd		17 WARABROOK BOULEVARDE	WARABROOK NSW, AUSTRALIA 2304	james.mcintyre@aecom.com	+61 02 4911 4900	+61 02 4911 4999	60305580 1 9		154842	CB, CC	•••		EN/004/13
Work Order	Client	Contact	Address		E-mail	Telephone	Facsimile	Project	Order number	C-O-C number	Sampler	Site		Quote number

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for release,

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results

WORLD RECOGNISED ACCREDITATION

NATA Accredited Laboratory 825
Accredited for compliance with ISO/IEC 17025.

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been Accreditation Category carried out in compliance with procedures specified in 21 CFR Part 11. Signatories Signatories

Dianne Blane Laboratory Coordinator (2IC)
Merrin Avery Supervisor - Inorganic

Newcastle - Inorganics Newcastle - Inorganics

Address 5588 Maitand Road Mayfield West NSW Australia 2304 - PRONE - 461 2 4014 2500 | Focsimile - 461 2 4968 0349 | Environmental Division Newcastle SEN 84 009 996 029 Dart of the ALC Group An ALC Limited Community

www.alsglobal.com

 Page
 2 of 4

 Work Order
 EN1400365

 Client
 AECOM Australia Pty Ltd

 Project
 60305580 1 9

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. Key:

LOR = Limit of reporting

This result is computed from individual analyte detections at or above the level of reporting

 Page
 3 of 4

 Work Order
 EN1400365

 Client
 AECOM Australia Pty Ltd

 Project
 60305580 1 9

Analytical Results

Sub-Matrix: IMPINGER SOLUTION (Matrix: AIR)		Ö	Client sample ID	KILN 1 SOX IPA	KILN 2 SOX IPA	IPA BLANK	KILN 2 SOX H202	KILN I SOX H202
	Clier	ıt samplir	Client sampling date / time	30-JAN-2014 15:00	31-JAN-2014 15:00	31-JAN-2014 15:00	31-JAN-2014 15:00	30-JAN-2014 15:00
Compound	CAS Number LOR	LOR	Unit	EN1400365-001	EN1400365-002	EN1460365-003	EN1400365-004	EN1400365-005
EA143C: Sulfuric Acid and Sulfur Dioxide (as SO3)	\$ 503)							
Volume - Impinger	1	-	mľ	198	288	493	4	
Sulfuric Acid as SO3	â	2	mg/sample	7	242	<2	10012	I
Volume - Impinger	1	-	m	i			252	323
Sulfur Dioxide as SO3	I	10	mg/sample				70	20

4 of 4 EN1400365 AECOM Australia Pty Ltd 60305580 1 9 Project

Page Work Order

Client

Analytical Results

Sub-Matrix: IMPINGER SOLUTION (Matrix: AIR)		Cife	Client sample ID	H2O2 BLANK	KILN 1 TF	KILN 2 TF	TF BLANK	
	Clie	nt samplir	Client sampling date / time	31-JAN-2014 15:00	30-JAN-2014 15:00	31-JAN-2014 15:00	31-JAN-2014 15:00	
Compound	CAS Number LOR	LOR	Unit	EN1400365-006	EN1400365-007	EN1400365-008	EN1400365-009	
EA143C: Sulfuric Acid and Suffur Diaxide (as SO3)	a SO3)							
Volume - Impinger	*	4	TILL THE	470		of Marketine College of College o	****	+
Sulfur Diaxide as SO3	1	10	mg/sample	<10			The second secon	1
EA144C: Gascous and Particulate Fluorides								
Fluoride (as HF)	1	0.1	mg/sample		3.6	9.0	<0.1	1
Volume - Impinger	ŀ	_	Ę	-	293	262	435	1

Phone: 02 49677880

STACK EMISSION - MOISTURE REPORT

Origin:

AECOM - Newcastle

Report:

5930-0-M

Page 1 of 1

Project:

60305580

Description:

Stack Emission Samples

Received: 04-Feb-14

Date:

07-Feb-14

Report To:

Chad Whitburn

Copy to:

FILE

17 Warabrook Blvd, Warabrook NSW 2304

Jar ID	Moisture (g)
F99	12.2
FA1	13.1
P30	16.5
P31	17.1
P36	12.3
T2	11.5
Z 11	18.7
Z 13	16.6
Z 16	10.6
Z 8	5.8

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025

Reported By:

Michael Campbell

Determined in Accordance With: Moisture content in stack gases by gravimetric using in-house M301

Phone: 02 49677880

STACK EMISSION - PARTICULATES REPORT

Origin:

AECOM - Newcastle

Report:

5930-0-P

Page 1 of 1

Project:

60305580

Description:

Report To:

Stack Emission Samples

Date:

07-Feb-14

Received: 04-Feb-14

Chad Whitburn

Come

Copy to:

FILE

17 Warabrook Blvd, Warabrook NSW 2304

Thimble ID		Volume (mL)	Total Particulate Matter (g)
T14	Thimble	75.5	0.0087
Т19	Thimble	-	0.0032
T23	Thimble	(a) (0.0137
Т9	Thimble	(4)	0.0131

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025

Note: Sampled by Client

Reported By:

Michael Campbell

Determined in Accordance With: Particulate matter - total in stack gases by gravimetric using in-house M300; Acetone/Water Rinse using AS4323.2

A.B.N. 44 000 964 278 3 - 5, 18 Redland Drive Mitcham, Vic, 3132 Telephone: (03) 9874 1988 Fax: (03) 9874 1933

REPORT NUMBER: M140192

Site/Client Ref: 60305580 1.9

Order No: 60305580 1.9

Chartered Chemists

10-Feb-2014

AECOM

17 Warabrook Byde Warabrook

NSW 2304

Attention: Chris Burns

CERTIFICATE OF ANALYSIS

SAMPLES: Eighteen samples were received for analysis

DATE RECEIVED: 5-Feb-2014

DATE COMMENCED: 5-Feb-2014

METHODS: See Attached Results

RESULTS: Please refer to attached pages for results.

Note: Results are based on samples as received at SGS Leeder Consulting's laboratories

REPORTED BY:

Ming Dai

Chemist

NATA Accredited Laboratory Number: 14429

Accredited for compliance with ISO/IEC 17025.

Matrix: Filter

Method: USEPA M29 (Analysis only) - MA-1400.FL.M29.02

	Leeder ID	2014001197	2014001198	2014001199	2014001200
	Client ID	KILN 1 No.1	KILN 2 No.1	Metals No.12	Method
Analyte Name	PQL				Blank
Sb	0.5	nd	nd	nd	nd
As	0.5	0.9	2.5	nd	nd
Ве	0.5	nd	nd	nd	nd
Cđ	0.5	6.0	4.7	nd	nd
Cr	0.5	6.3	8.7	0.9	nd
Со	0.5	nd	nd	nd	nd
Cu	0.5	0.5	0.9	0.6	nd
Pb	0.5	16	42	nd	nd
Mg	5	92	170	120	nd
Mn	0.5	1.3	2.2	0.7	nd
Hg	0.5	nd	nd	nd	nd
Ni	0.5	0.9	0.7	nd	nd
Se	0.5	2.1	1.0	nd	nd
TI	0.5	nd	2.3	nd	nd
Sn	0.5	nd	5.6	nd	nd
V	0.5	2.0	2.4	2.0	nd
Zn	0.5	990	2600	1200	nd

Matrix: Impinger Solution

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.06 Metals in Impingers (ug total)

	Leeder ID	2014001201
	Client ID	KILN1 No.3
Analyte Name	PQL	
Sb	0.1	0.2
As	0.1	1.3
Ве	0.1	nd
Cd	0.1	9.1
Cr	0.1	11
Со	0.1	nd
Cu	0.1	15
Pb	0.1	3.2
Mg	1	8
Mn	0.1	8.6
Нg	0.1	nd
Ni	0.1	1.1
Se	0.1	0.2
Tl	0.1	0.1
Sn	0.1	0.6
V	0.1	nd
Zn	0.1	45
Sample Volume (ml)		100

Matrix: Impinger Solution

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.06 Metals in Impingers (ug total)

	Leeder ID Client ID	2014001202 KILN2 No.3	2014001203 KILN1 No.4	2014001204 KILN2 No.4
Analyte Name	PQL			
Sb	0.1	0.5	2.9	1.2
As	0.1	12	0.9	1.5
Be	0.1	nd	nd	nd
Cd	0,1	16	9.8	6.1
Cr	0.1	14	0.4	4.9
Со	0.1	nd	nđ	nd
Cu	0.1	3.7	0.6	0.8
Pb	0.1	18	0.4	16
Mg	1	21	8	10
Mn	1.0	11	6.3	3.7
Hg	0.1	1.0	nd	2.3
Ni	0.1	1.7	0.4	nd
Se	0.1	7.3	15	2.4
Tl	0.1	1.7	nd	1.7
Sn	0.1	0.9	2.3	0.6
V	0.1	nd	nd	nđ
Zn	0.1	340	5.7	270
Sample Volume (ml)		95	320	330

(I) RESULTS

Report No: M140192

Matrix: Impinger Solution

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.06 Metals in Impingers (ug total)

	Leeder ID	2014001209	2014001211
	Client ID	Metals No.8A	Metals No.9
Analyte Name	PQL		
Sb	0.1	nd	0.6
As	0.1	nd	nd
Be	0.1	nd	nd
Cd	0.1	nd	nd
Cr	0.1	nd	nd
Со	0.1	nd	nd
Cu	0.1	0.6	nd
Pb	0.1	nd	nd
Mg	1	3	4
Mn	0.1	3.1	4.0
Hg	0.1	nd	nd
Ni	0.1	nd	nd
Se	0.1	nd	nd
Tl	0.1	nd	nd
Sn	0.1	nd	nd
V	0.1	nd	nd
Zn	0.1	2.0	0.8
Sample Volume (ml)		310	200

Matrix: Impinger Solution

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.06 Metals in Impingers (ug total)

	Leeder ID	2014001213
	Client ID	Method
Analyte Name	PQL	Blank
Sb	0.1	nd
As	0.1	nd
Ве	0.1	nd
Cd	1,0	nd
Cī	0.1	nd
Со	0.1	nd
Cu	0.1	nd
Pb	0.1	nd
Mg	1	nd
Mn	1.0	nd
Hg	0.1	nd
Ni	0.1	nd
Se	0,1	nd
Tl	0.1	nd
Sn	0.1	nd
V	0.1	nd
Zn	0.1	nd

(I) RESULTS

Report No: M140192

Matrix: Impinger Solution

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.04 Mercury in Impingers (ug total)

Sample units are expressed in µg total

	Leeder ID Client ID	2014001210 Metals No.8B
Analyte Name	PQL	
Hg	0.5	nd
Sample Volume (ml)		50

Matrix: Impinger Solution

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.04 Mercury in Impingers (ug total)

	Leeder ID Client ID	2014001212 Metals No.11
Analyte Name	PQL	
Нg	0,5	nd
Sample Volume (ml)		250

Matrix: KMnO4

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.04 Mercury in Impingers (ug total)

Sample units are expressed in µg total

	Leeder ID	2014001205	2014001206
	Client ID	KILN1 No.5A	KILN2 No.5A
Analyte Name	PQL		
Hg	0.5	nd	nd
Sample Volume (ml)		100	95

Matrix: KMnO4

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.04 Mercury in Impingers (ug total)

	Leeder ID	2014001207	2014001208
	Client ID	KILN1 No.5C	KILN2 No.5C
Analyte Name	PQL		
Нд	0.5	nd	nd
Sample Volume (ml)		190	240

Matrix: KMnO4

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.04 Mercury in Impingers (ug total)

Sample units are expressed in µg total

	Leeder ID	2014001214	2014001215	2014001216
	Client ID	KILN1 No.5B	KILN2 No.5B	Metals No.10
Analyte Name	PQL			
Hg	0.5	nd	4.9	nd
Sample Volume (ml)		400	400	100

Matrix: KMnO4

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.04 Mercury in Impingers (ug total)

	Leeder ID Client ID	2014001217 Method
Analyte Name	PQL	Blank
Hg	0.5	nd

(II) QUALITY CONTROL

Matrix: Filter

Method: USEPA M29 (Analysis only) - MA-1400.FL.M29.02

Quality Control Results are expressed in Percent Recovery of expected result

	Leeder ID	2014001218	2014001219
	Client ID	Matrix	Matrix
Analyte Name	PQL		
	- LQL	Spike	Spike Dup
Sb		116	114
As		111	111
Ве		120	117
Cd		113	112
Cr		116	117
Со		112	114
Cu		114	113
Pb		108	109
Mg		94	96
Mn		111	111
Hg		102	104
Ni		112	111
Se		107	109
Tl		102	101
Sn		114	113
V		120	119
Zn		89	93

Report No: M140192

(II) QUALITY CONTROL

Report No: M140192

Matrix: Impinger Solution

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.06 Metals in Impingers (ug total)

Quality Control Results are expressed in Percent Recovery of expected result

	Leeder ID Client ID	2014001220 Method	2014001221 Method
Analyte Name	PQL	Spike	Spike Dup
Sb		94	116
As		109	109
Ве		124	121
Cd		113	115
Cr		129	118
Со		108	112
Cu		127	116
Pb		109	116
Mg		103	96
Мп		110	109
Hg		110	111
Ni		111	111
Se		107	108
Tl		99	108
Sn		112	112
V		112	113
Zn		99	99

(II) QUALITY CONTROL

Matrix: KMnO4

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.04 Mercury in Impingers (ug total)

Quality Control Results are expressed in Percent Recovery of expected result

	Leeder ID Client ID	2014001222 Method
Analyte Name	PQL	Spike
Hg		98

Matrix: KMnO4

Method: USEPA M29 (Analysis only) - MA-1400.IMP.M29.04 Mercury in Impingers (ug total)

Quality Control Results are expressed in Percent Recovery of expected result

	Leeder ID Client ID	2014001223 Method
Analyte Name	PQL	Spike Dup
Hg		102

Report No: M140192

Report No: M140192

QUALIFIERS / NOTES FOR REPORTED RESULTS

PQL	Practical Quantitation Limit
is	Insufficient Sample to perform this analysis.
Т	Tentative identification based on computer library search of mass spectra.
ND	Not Detected - The analyte was not detected above the reported PQL.
NC	Not calculated, Results below PQL
nr	Not Requested for analysis.
R	Rejected Result - results for this analysis failed QC checks.
S Q	Semi-Quantitative result - quantitation based on a generic response factor for this class of analyte.
IM	Inappropriate method of analysis for this compound
U	Unable to provide Quality Control data - high levels of compounds in sample interfered with analysis of QC results.
UF	Unable to provide Quality Control data- Surrogates failed Q Cchecks due to sample matrix effects
L	Analyte detected at a level above the linear response of calibration curve.
Ē	Estimated result. NATA accreditation does not cover estimated results.
C 1	These compounds co-elute.
C 2	These compounds co-elute.
СТ	Elevated concentration. Results reported from carbon tube analysis
* *	Sample shows non-petroleum hydrocarbon profile

This document is issued, on the Client's behalf, by the Company under its General Conditions of Service available on request and accessible at http://www.sgs.com/en/Terms-and-Conditions/General-Conditions-of-Services-English.aspx. The Client's attention is drawn to the limitation of liability, indemnification and jurisdiction issues defined therein.

Any other holder of this document is advised that information contained hereon reflects the Company's findings at the time of its intervention only and within the limits of Client's instructions, if any. The Company's sole responsibility is to its Client and this document does not exonerate parties to a transaction from exercising all their rights and obligations under the transaction documents

This report must not be reproduced, except in full.

APPENDIX ONE.

CHAIN OF CUSTODY DOCUMENT

Dispatch samples to: Unit 5/18 Rediand Drive, Mitcham, VIC, 3132

Chain of Custody Record -

Leeder Consulting

Sheet

Attn: Lyndall Stevens - Contact Ph: (03) 9874 1988 Fax: (03) 9874 1933

Comments: (eg. Highly contaminated samples, reporting requirements etc) Sample Disposal (Please X) After: 4 Weeks () 6 Weeks () Please indicate whether the HNO3 acidified sample has been filtered. Dissolved metals require filtering in the field. Analyses Required (Analyte + Method Code) Please Note: 52 64 2 HOU (G=glass, P=plastic) 125mL (P) Yes/No HNO3 Pes / No Nes / No Filtered 125mL
 Vial(G)
 (P)
 (P)
 (P)

 H2SO4
 HCI acid
 Zn Acc.

 washed
 NaOH
 EMAIL REPORT TO: Ntlair. Labs@aecom.com 125mL CONTACT FHONE No: 02 4911 4900 02 4911 4999 01-1L
 Date
 Matrix
 0.1-11
 0.1-1.0
 0.1-1.0
 40ml
 40ml

 Sampled Soif Water Other
 Jar(G)
 litre(G)
 litre(P)
 vial(G)
 vial(G)
 Samples Received Chilled? Containers/Preservation (please tick) Custody Seals Intact? Nat RESULTS REQUIRED BY: LAB QUOTE NUMBER: Nat CONTACT FAX No: 5/2/14 10,30c, Nat (Date / Time) CHAIN OF CUSTODY RECORD PROJECT REF. / ORDER No. 60305590 189 Cons-subs (Signature) (Signature) Totals: Warabrook NSW 2304 CONTACT: CHRS SW 17 Warabrook Blvd No. 54 5 No. X No. 58 RELEASED BY: (Name) 5,5 VPACAMARA No. 3 CLIENT NAME: AECOM RECEIVED BY: (Name) ₹, 3 Sample ID SAMPLED BY: C(S) CLIENT ADDRESS: 55.4

Date of Issue: 28/10/2011

Chain of Custody Record -Leeder Consulting

Dispatch samples to: Unit 5/18 Redland Drive, Mitcham, VIC, 3132

Attn: Lyndall Stevens - Contact Ph: (03) 9874 1988 Fax: (03) 9874 1933

Sheet 7 of 8

17 Mark States 17 Mark S	CLIENT NAME: AECOM			Ĭ.	- 15.4 (C) (C) (C) (C)	The second second			1/33							
COCK NSW 2304 Court. C	CLIENT ADDRESS: 17 Warabrook Blvd	CONS-546	CONTACT FA	ë	4911	4900 1999				Sample Dis	posal (Please	X) After: 4	Weeks ()	6 Weeks	<u> </u>	
No. 17 Totals Chart	Warabrook NSW 2304	_^2	RESULTS REQ	UIRED BY:		ı				Analyse	Required	- 1 + ı		Code)		T
Sample Date Marrix Date Marrix Date Marrix Date Marrix Date Marrix Date Marrix Date Marrix Date	SAMPLED BY: C.B. (C		EMAIL REPOR	KTTO: NEL UMBER:		os eaeco	m.com		G. 2 V53	62 aur		ł				Ī
Sample Dample Dample Sample Sample Sample Sample Sample D	ROJECT REF. / ORDER No. 60.	,,	Containers/Pres	ervation (please	tick)			sagle=4))	P-pleetic)	· S-						
No SB		Sampled Soil Water Oth	0.1-1L 0.1-1.0	0.1-1.0 40ml litre(P) Vial(G	40mi Viak(G) H2SO4			<i>5</i>	(P)) W 3.	641					· · · ·
No S S						washe		HNO3	TOP	V						
No . O No . O	1 1 No 8B									7	1	+				
No . 10	1. No. 9				+	-				2		1				
No . 12						+				7		+				-7
No.12 Totals: CHAIN OF CUSTODY RECORD (Name) (Signature) (Signature) (Signature) (Mane) (Signature) (Signature) (Apr. 17me) (Mane) (Signature) (Signature) (Apr. 17me) (Mane) (Signature) (Signature) (Apr. 17me) (Signature) (Apr. 17me					-	-			1	7	7	-			\dashv	
Totals:	51. No. 12					-				3		1				
Totals: CHAIN OF CUSTODY RECORD Custody Senis Intact? Chair Time Custody Senis Intact? Custody Senis Intact. C	.				+					>						
Totals: CHAIN OF CUSTODY RECORD Custody Seals Intact? Custody Seals Intact. Custody Seals In				-	+	+			7	-						
Totals: CHAIN OF CUSTODY RECORD Custody Seals intact? (Signature) (Date / Time) Custody Seals intact? (tes) / No Chame			 		+	-				-						
Totals: CHAIN OF CUSTODY RECORD Signature Chatody Seals Intact? (Name) (Signature) (Date / Time) (Signature) (Date / Time) (Signature) (Date / Time) (Signature) (Date / Time) (Signatur						1				-					-	
CHAIN OF CUSTODY RECORD				-		+			N 5			_				
CHAIN OF CUSTOBY RECORD Surface (Signature) (Date / Time) (Custody Seals Intact? (Name) (Signature) (Date / Time) Samples Received Chilled? (Res) / No ATARA STALL 10.30c. v.					1											T
Totals: CHAIN OF CUSTODY RECORD Custody Seats Intact? (Signature) (Date / Time) (Signature) (Date / Time) (Signature) (Date / Time) (Signature) (Date / Time) (Signature) (Date / Time) (Signature) (Date / Time) (Signature) (Signature) (Date / Time) (Signature) (Signature) (Signature) (Date / Time) (Signature) (Signatu					+	1	+							-	-	Τ
(Name) (Signature) (Date / Time) Custody Seals Intact? (Name) (Signature) (Date / Time) Samples Received Chilled? (Tes) / No ATARA STAIL 10.30		Totals:												_		
Survey Signature (Date / Time) Custody Seals Intact? (Ves) / No		N OF CUSTODY REC	ORD							_				-		T
(Name) (Signature) (Date / Time) Samples Received Chilled? Art Art. A. Stall 2 10 Source	(Name)	(Signature)	Time)	Custody Seals Inta	ct?			(es) / No	<u>r</u>	ase Note: ase indicate	Dissolved m	retals require fi	iltering in the ample has be	e field. en filtered.		
	EIVED BY: (Name)	12	Date / Time)	Samples Received	Chilled?		0	(es) / No	<u>8</u>	mments: (cg	Highly contam	unated samples	, reporting r	equirements	(ට) ක	

Date of Issue: 28/10/2011

	8	CERTIFICATE OF ANALYSIS	
Work Order	EN1401194	Page	10f3
Client	: AECOM Australia Ptv I td		
Contact	MR JAMES LANG	Laboratory	Environmental Division Newcastle
Address	: 17 WARABROOK BOULEVARDE		: Peter Keyfe
	WARABROOK NSW. AUSTRALIA 2304	200 100	5/353 Maitland Road Mayfield West NSW Australia 2304
E-mail	: james.lang@aecom.com	Ц	
Telephone	: +61 02 4911 4900	T-11.00	: peter.keyte@als.com.au
Facsimile	: +61 02 4911 4999		: 61-2-4968-9433
Project	: 60305580 TASK 1.9		: +61- 2- 4968 0349
Order number	: 60305580 TASK 1.9		: NEPM 2013 Schedule B(3) and ALS QCS3 requirement
C-O-C number	: 154845	Leading Control of the Control of th	
Sampler	: J LANG		U8-APK-2014
Site	į	elea passi	15-APR-2014
		No of samples received	7
Quote number	EN/004/13	No. of samples analysed	· •
This report emorrando and		0010011011010101010101010101010101010101	

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted. All pages of this report have been checked and approved for

This Certificate of Analysis contains the following information:

- General Comments
 - Analytical Results

NATA Accredited Laboratory 825

Signatories

This document has been electronically signed by the authorized signatories indicated below. Electronic signing has been Accreditation Category Position Signatories

Laboratory Coordinator (2IC) Dianne Blane

Newcastle - Inorganics

WORLD RECOGNISED ACCREDITATION

Actives 5/585 Mailland Road Mayfield West NSW Australia 2304 PHONE +61 2 4014 2500 Facsimile +61 2 4968 0349 Environmental Division Newcastle Asks as 029 Part of the ALS Group An ALS Limited Company

www.abglobal.com

RIGHT SOLUTIONS WONT PARTNER

AECOM Australia Pty Ltd 60305580 TASK 1 9 EN1401194 2 of 3 Work Order Project Client

General Comments

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contact for details.

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society. LOR = Limit of reporting

A = This result is computed from individual analyte detections at or above the level of reporting

Particular samples required dilution prior to analysis due to matrix interferences. LOR values have been adjusted accordingly.

 Page
 3 of 3

 Work Order
 EN1401194

 Client
 AECOM Australia Pty Ltd

 Project
 60305580 TASK 1 9

Analytical Results

Į BLANK - SO2 AS SO3 03-APR-2014 15:00 EN1401194-004 **₹** 6 BLANK - H2SO4 AS 03-APR-2014 15:00 EN1401194-003 162 KILN 2 - SO2 AS SO3 03-APR-2014 15:00 EN1401194-002 263 210 l ŀ KILN 2 - H2SO4 AS **SO3** 03-APR-2014 15:00 EN1401194-001 330 Client sample ID Client sampling date / time mg/sample mg/sample Unit 뒽 뒽 LOR 5 N Ĩ CAS Number 1 EA143C: Sulfuric Acid and Sulfur Dioxide (as SO3) Sub-Matrix: IMPINGER SOLUTION (Matrix: AIR) Sulfur Dioxide as SO3 Sulfuric Acid as SO3 Volume - Impinger Volume - Impinger Compound

5/11 McIntosh Drive, Mayfield West, NSW 2304

Phone: 02 49677880

STACK EMISSION - MOISTURE REPORT

Origin:

AECOM - Newcastle

Report:

6326-0-M

Page 1 of 1

Project:

60305580 / 1.9

Description:

Stack Emission Samples

Date:

10-Apr-14

Received: 08-Apr-14

Report To:

Chad Whitburn

Copy to:

FILE

17 Warabrook Blvd, Warabrook NSW 2304

Jar ID

Moisture

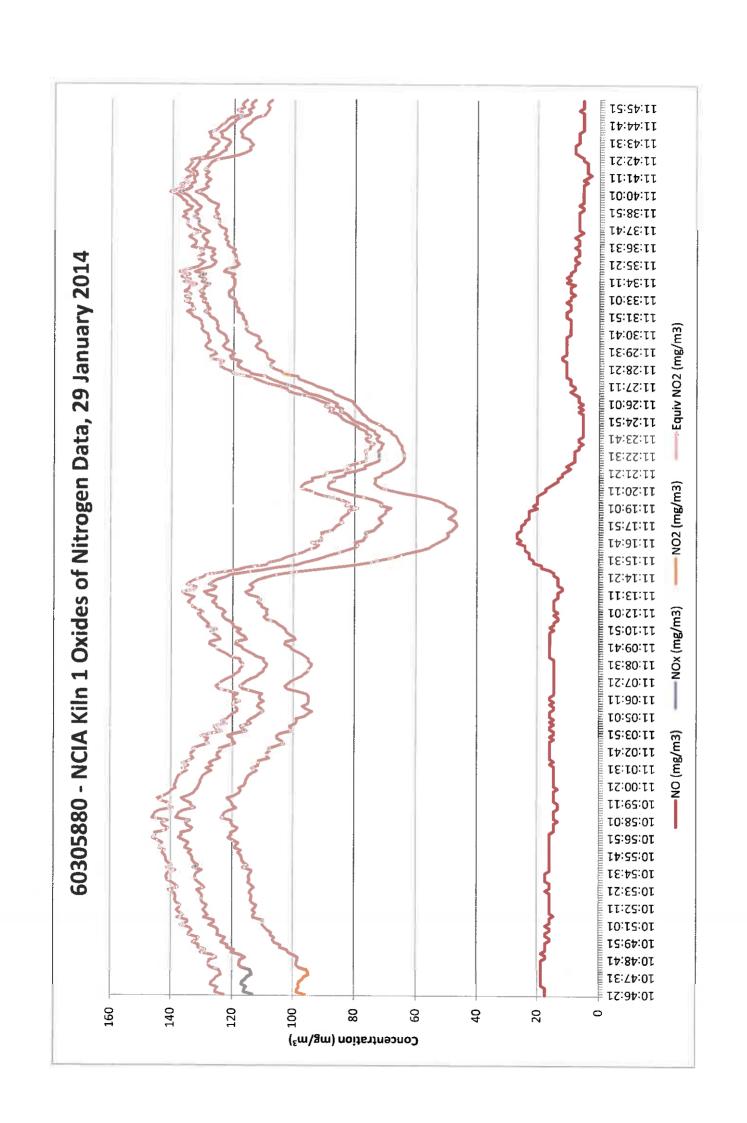
(g)

F27

13.3

NATA Accredited Laboratory 18079 Accredited for compliance with ISO/IEC 17025

Reported By:


Belinda Evans

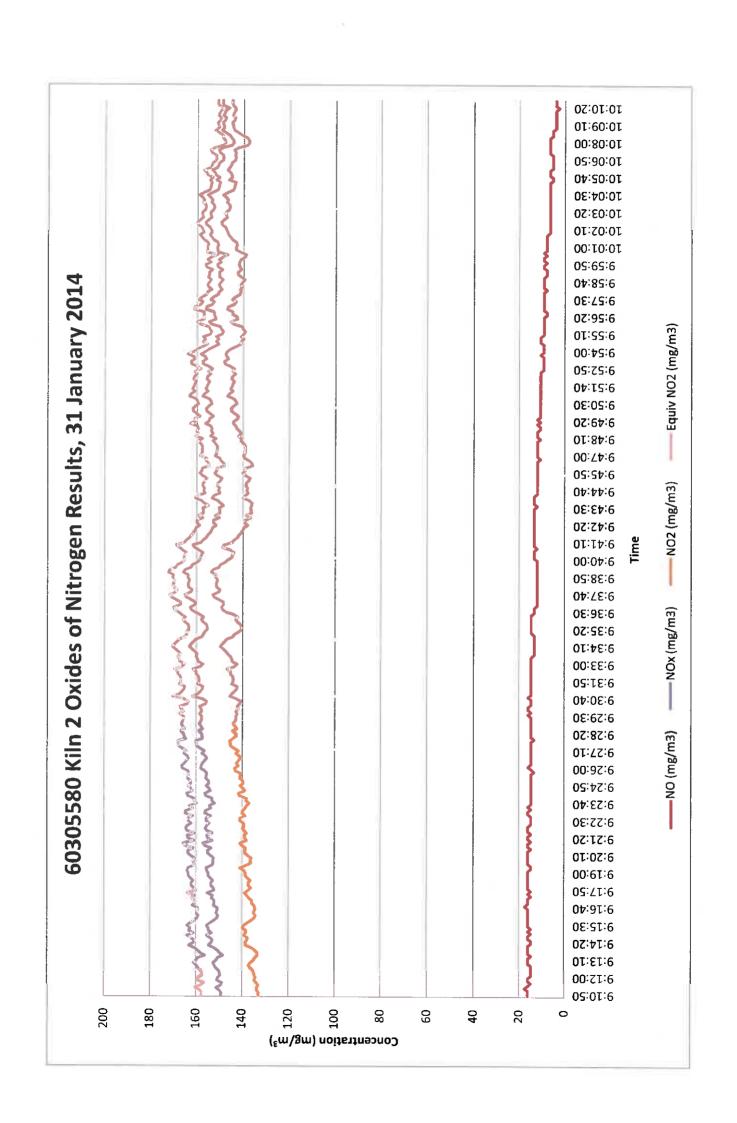
Determined in Accordance With: Moisture content in stack gases by gravimetric using in-house M301

Appendix C

Raw and Calculated Gas Data (12 pages)

Appendix C Raw and Calculated Gas Data (12 pages)

Date	Time	NO (ppm)	NO (mg/m³)	NOx (ppm)	NOx (mg/m³)	NO₂ (ppm)	NO ₂ (mg/m ³)	Equiv NO ₂ (ppm)	Equiv NO ₂ (mg/m³)
29-Jan-14	10:46:21	13	17	44	113	46.7	96	67	123
29-Jan-14	10:46:31	13	17	46	116	48.1	99	68	125
29-Jan-14	10:46:41	13	17	49	116	48.0	99	68	125
29-Jan-14	10:46:51	13	17	50	115	47.7	98	68	125
29-Jan-14	10:47:01 10:47:11	14	19	50	117	47.8	98	69	127
29-Jan-14 29-Jan-14	10:47:11	14	19 19	50 50	117	47.7	98	69	127
29-Jan-14	10:47:31	14	19	51	116 115	47.2 46.9	97 96	69 68	126
29-Jan-14	10:47:41	14	19	52	114	46.2	95	68	125 124
29-Јап-14	10:47:51	14	19	52	114	46.3	95	68	124
29-Jan-14	10:48:01	14	19	53	114	46.5	95	68	124
29-Jan-14	10:48:11	14	19	54	117	47.8	98	69	127
29-Jan-14	10:48:21	14	19	54	118	48.2	99	70	128
29-Jan-14	10:48:31	14	19	54	118	48.1	99	70	128
29-Jan-14	10:48:41	14	19	54	117	48.0	99	69	127
29-Jan-14 29-Jan-14	10:48:51 10:49:01	13	17 17	54 55	116 117	47.9	98	68	125
29-Jan-14	10:49:11	14	19	55	120	48.6 49.4	100 101	69 71	127
29-Jan-14	10:49:21	13	17	55	119	49.6	102	70	130 129
29-Jan-14	10:49:31	13	17	55	122	50.8	104	71	131
29-Jan-14	10:49:41	13	17	55	122	50.7	104	71	131
29-Jan-14	10:49:51	13	17	56	124	51.7	106	72	133
29-Jan-14	10:50:01	12	16	56	123	52.0	107	70	131
29-Jan-14	10:50:11	12	16	56	122	51.7	106	70	131
29-Jan-14	10:50:21	13	17	55	125	52.3	107	72	134
29-Jan-14 29-Jan-14	10:50:31 10:50:41	13 12	17 16	56 56	125 125	52.2	107	72	134
29-Jan-14 29-Jan-14	10:50:41	12	16	56 55	125 125	52.8 53.2	108 109	71 72	133
29-Jan-14	10:50:51	13	17	55	127	53.6	1109	74	134 137
29-Jan-14	10:51:11	12	16	55	126	53.5	110	72	135
29-Jan-14	10:51:21	12	16	55	126	53.5	110	72	135
29-Jan-14	10:51:31	12	16	56	129	55.1	113	74	138
29-Jan-14	10:51:41	11	15	57	128	55.1	113	72	136
29-Jan-14	10:51:51	12	16	56	129	54.8	113	73	137
29-Jan-14	10:52:01	12	16	57	129	55.2	113	74	138
29-Jan-14 29-Jan-14	10:52:11 10:52:21	12 12	16 16	56 56	129 128	54.8	113	73	137
29-Jan-14	10:52:31	12	16	56	130	54.6 55.3	112 114	73 74	137 138
29-Jan-14	10:52:41	12	16	57	130	55.5	114	74	139
29-Jan-14	10:52:51	12	16	57	130	55.4	114	74	138
29-Jan-14	10:53:01	12	16	57	130	55.4	114	74	138
29-Jan-14	10:53:11	12	16	57	130	55.7	114	74	139
29-Jan-14	10:53:21	13	17	57	131	55.5	114	75	141
29-Jan-14	10:53:31	12	16	57	129	55.0	113	73	138
29-Jan-14 29-Jan-14	10:53:41 10:53:51	12 12	16 16	57 58	130	55.4	114	74	138
29-Jan-14	10:54:01	13	17	58	131 132	55.9 55.7	115 114	74 76	139 141
29-Jan-14	10:54:11	13	17	58	132	55.8	115	76	141
29-Jan-14	10:54:21	13	17	58	132	55.8	115	76	141
29-Jan-14	10:54:31	13	17	58	131	55.5	114	75	141
29-Jan-14	10:54:41	12	16	59	130	55.4	114	74	138
29-Jan-14	10:54:51	12	16	60	133	56.8	117	75	141
29-Jan-14	10:55:01	12	16	59	131	56.0	115	74	140
29-Jan-14 29-Jan-14	10:55:11 10:55:21	12 12	16 16	59 59	132 133	56.6	116	75	141
29-Jan-14 29-Jan-14	10:55:21	12	16	59	133	56.9 56.9	117 117	75 75	141 141
29-Jan-14	10:55:41	12	16	60	133	57,1	117	76	141
29-Jan-14	10:55:51	12	16	60	134	57.5	118	76	143
29-Jan-14	10:56:01	12	16	60	133	57.1	117	76	142
29-Jan-14	10:56:11	12	16	60	135	58.1	119	77	144
29-Jan-14	10:56:21	12	16	60	135	57.8	119	76	143
29-Jan-14	10:56:31	12	16	60	134	57.5	118	76	143
29-Jan-14	10:56:41	12	16	60	136	58.3	120	77	144
29-Jan-14 29-Jan-14	10:56:51 10:57:01	12 12	16 16	61 61	137	59.1	121	78	146
29-Jan-14	10:57:11	12	16	61	136 137	58.6 58.7	120 121	77	145
29-Jan-14	10:57:11	11	15	60	134	57.9	119	75	145 141
29-Jan-14	10:57:31	11	15	61	133	57.6	118	74	141
29-Jan-14	10:57:41	11	15	62	135	58.4	120	75	143
29-Jan-14	10:57:51	11	15	62	135	58.6	120	75	143
29-Jan-14	10:58:01	10	13	62	134	58.6	120	74	141
29-Jan-14	10:58:11	11	15	61	138	60.2	124	77	146
29-Jan-14	10:58:21	11	15	62	138	59.9	123	77	146
29-Jan-14 29-Jan-14	10:58:31 10:58:41	11	15 15	61 62	137	59.7	123	77	145
29-Jan-14 29-Jan-14	10:58:51	10	13	62	136 132	59.0 57.8	121 119	76 73	144
29-Jan-14	10:59:01	10	13	62	133	58.4	120	73	139 140
1 0001 1-	.0.00,01		10	Vζ	100	JU.+	120	- 14	140


Date	Time	NO (ppm)	NO (mg/m³)	NOx (ppm)	NOx (mg/m³)	NO ₂ (ppm)	NO ₂ (mg/m ³)	Equiv NO ₂ (ppm)	Equiv NO ₂ (mg/m ³)
29-Jan-14	10:59:11	10	13	62	134	58.5	120	74	141
29-Jan-14	10:59:21	11	15	63	135	58.8	121	76	143
29-Jan-14	10:59:31	11	15	62	137	59.3	122	76	144
29-Jan-14	10:59:41	11	15	63	134	58.1	119 118	75 74	142 140
29-Jan-14 29-Jan-14	10:59:51 11:00:01	11	15 15	63 64	133 132	57.4 57.1	117	74	140
29-Jan-14	11:00:01	10	13	64	131	57.4	118	73	138
29-Jan-14	11:00:21	11	15	64	131	56.6	116	73	139
29-Jan-14	11:00:31	11	15	64	131	56.4	116	73	138
29-Jan-14	11:00:41	11	15	64	130	56.3	116	73	138
29-Jan-14	11:00:51	11	15	65	130	56.1	115	73	138
29-Jan-14	11:01:01	11	15	65	130	55.9	115	73	137
29-Jan-14	11:01:11	11	15	64	128	55.3	114	72	136
29-Jan-14 29-Jan-14	11:01:21 11:01:31	11	15 15	64 64	127 129	54.6 55.4	112 114	71 72	135 136
29-Jan-14	11:01:41	11	15	64	126	54.4	112	71	134
29-Jan-14	11:01:51	12	16	63	128	54.3	112	73	136
29-Jan-14	11:02:01	11	15	63	126	54.3	112	71	134
29-Jan-14	11:02:11	12	16	62	124	52.6	108	. 71	133
29-Jan-14	11:02:21	12	16	62	125	53.0	109	71	133
29-Jan-14	11:02:31	12	16	61	125	53.0	109	71	133
29-Jan-14	11:02:41	12	16 16	62 61	124 124	52.5 52.7	108 108	71 71	132 133
29-Jan-14 29-Jan-14	11:02:51 11:03:01	12	16	61	124	52.7 51.5	108	71	130
29-Jan-14	11:03:01	12	16	61	119	50.2	103	69	128
29-Jan-14	11:03:21	12	16	61	120	50.6	104	69	129
29-Jan-14	11:03:31	11	15	62	120	51.3	105	68	128
29-Jan-14	11:03:41	12	16	61	122	51.4	106	70	130
29-Jan-14	11:03:51	11	15	62	119	50.9	105	68	127
29-Jan-14 29-Jan-14	11:04:01	11	15 16	63 64	116 117	49.1 49.1	101 101	66 68	123 125
29-Jan-14 29-Jan-14	11:04:11 11:04:21	12 12	16	65	117	49.1	101	68	125
29-Јал-14	11:04:21	11	15	65	114	48.4	99	65	122
29-Jan-14	11:04:41	12	16	65	115	48.2	99	67	124
29-Jan-14	11:04:51	11	15	65	114	48.3	99	65	122
29-Jan-14	11:05:01	12	16	65	112	46.9	96	65	121
29-Jan-14	11:05:11	12	16	66	111	46.4	95	65	120
29-Jan-14	11:05:21	12	16	66	110	45.7	94	64 64	118
29-Jan-14 29-Jan-14	11:05:31 11:05:41	11	15 15	66 67	111 112	46.7 47.3	96 97	64	118 120
29-Jan-14 29-Jan-14	11:05:41	12	16	66	111	46.4	95	65	120
29-Jan-14	11:06:01	11	15	67	110	46.3	95	63	118
29-Jan-14	11:06:11	12	16	67	111	46.3	95	65	120
29-Jan-14	11:06:21	12	16	66	111	46.3	95	65	120
29-Jan-14	11:06:31	11	15	68	110	46.6	96	63	118
29-Jan-14	11:06:41	11	15	68	114	48.1	99	65	121
29-Jan-14 29-Jan-14	11:06:51 11:07:01	11 11	15 15	68 68	117 118	49.7 50.1	102 103	67 67	125 125
29-Jan-14	11:07:01	11	15	68	117	49.6	102	66	124
29-Jan-14	11:07:21	11	15	68	116	49.1	101	66	123
29-Jan-14	11:07:31	11	15	69	114	48.4	99	65	122
29-Jan-14	11:07:41	11	15	69	112	47.4	97	64	120
29-Jan-14	11:07:51	11	15	70	111	47.0	97	64	119
29-Jan-14	11:08:01	11	15	70	110	46.4	95	63	118
29-Jan-14 29-Jan-14	11:08:11 11:08:21	11	15 15	69 70	110 109	46.3 45.9	95 94	63 63	118 117
29-Jan-14 29-Jan-14	11:08:21	11	15	70	109	45.8	94	63	117
29-Jan-14	11:08:41	11	15	70	110	46.3	95	63	118
29-Jan-14	11:08:51	11	15	70	110	46.3	95	63	118
29-Jan-14	11:09:01	12	16	71	112	46.8	96	65	121
29-Jan-14	11:09:11	12	16	70	113	47.4	97	66	122
29-Jan-14	11:09:21	12	16	71	115	48.2	99	67	124
29-Jan-14	11:09:31	12	16	71 71	117 117	49.0 49.2	101 101	67 68	125 126
29-Jan-14 29-Jan-14	11:09:41 11:09:51	12 12	16 16	71	117	49.2 50.1	101	69	128
29-Jan-14	11:10:01	12	16	71	119	50.0	103	68	127
29-Jan-14	11:10:11	12	16	72	115	48.4	99	67	124
29-Jan-14	11:10:21	12	16	72	116	48.7	100	67	125
29-Jan-14	11:10:31	_12	16	72	118	49.4	101	68	126
29-Jan-14	11:10:41	12	16	72	119	49.9	102	68	127
29-Jan-14	11:10:51	11	15	72	117	50.0	103	67	125
29-Jan-14 29-Jan-14	11:11:01	12 11	16 15	72 73	120 120	50.5 51.2	104 105	69 68	128 128
29-Jan-14 29-Jan-14	11:11:21	11	15	72	121	51.6	105	68	129
29-Jan-14	11:11:31	10	13	69	122	53.1	109	68	130
29-Jan-14	11:11:41	10	13	67	123	53.5	110	69	130
29-Jan-14	11:11:51	11	15	73	123	52.9	109	70	131

Date	Time	NO (nom)	110 (, 3)	NOv (nom)	110 (13)	NO (see	NO ((3)	Facility NO. ()	= : 110 (13
29-Jan-14	11:12:01	10	NO (mg/m³)	NOx (ppm) 74	NOx (mg/m³) 122	NO ₂ (ppm) 53.1	NO ₂ (mg/m³) 109	Equiv NO₂ (ppm) 68	Equiv NO ₂ (mg/m³) 130
29-Jan-14	11:12:11	11	15	75	123	52.9	109	70	131
29-Jan-14	11:12:21	11	15	74	125	53.8	110	71	133
29-Jan-14	11:12:31	11	15	74	125	53.9	111	71	133
29-Jan-14	11:12:41	11	15	74	127	54.5	112	71	135
29-Jan-14	11:12:51	11	15	73	126	54.0	111	71	133
29-jan-14	11:13:01	10	13	72	125	54.5	112	70	132
29-Jan-14	11:13:11	10	13	70	128	55.9	115	71	135
29-Jan-14 29-Jan-14	11:13:21 11:13:31	10 9	13 12	69 69	129	56.4	116	72	136
29-Jan-14 29-Jan-14	11:13:41	9	12	68	126 125	55.5 55.2	114 113	69 69	132 132
29-Jan-14	11:13:51	10	13	68	128	55.7	114	71	135
29-Jan-14	11:14:01	10	13	67	127	55.1	113	70	134
29-Jan-14	11:14:11	10	13	67	125	54.4	112	70	132
29-Jan-14	11:14:21	10	13	67	122	53.1	109	68	130
29-Jan-14	11:14:31	11	15	65	121	51.6	106	68	129
29-Jan-14	11:14:41	11	15	61	115	49.0	101	66	123
29-Jan-14	11:14:51	12	16	54	110	45.6	94	64	118
29-Jan-14	11:15:01	14	19	46	106	42.4	87	64	116
29-jan-14	11:15:11	14	19	39	99	39.1	80	61	109
29-Jan-14 29-Jan-14	11:15:21 11:15:31	16 16	21	37 39	97 93	36.7 34.9	75 72	61 59	108
29-Jan-14 29-Jan-14	11:15:31	17	23	39	93	33.0	68	59	105 103
29-Jan-14	11:15:51	17	23	30	88	31.8	65	58	100
29-Jan-14	11:16:01	17	23	40	85	30.3	62	56	97
29-Jan-14	11:16:11	18	24	52	83	28.5	59	56	95
29-Jan-14	11:16:21	18	24	55	80	27.2	56	55	93
29-Jan-14	11:16:31	18	24	49	79	26.7	. 5 5	54	92
29-Jan-14	11:16:41	20	27	43	80	25.9	53	57	94
29-Jan-14	11:16:51	19	25	39	77_	25.2	52	54	91
29-Jan-14	11:17:01	20	27	46	77	24.4	50	55	91
29-Jan-14	11:17:11 11:17:21	20 20	27 27	57 60	76 77	24.1	49	55	91
29-Jan-14 29-Jan-14	11:17:21	19	25	60	74	24.3 23.6	50 48	55 53	91
29-Jan-14 29-Jan-14	11:17:41	19	25	61	73	23.0	48	52	87 87
29-Jan-14	11:17:51	19	25	61	72	22.8	47	52	86
29-Jan-14	11:18:01	18	24	61	71	22.9	47	51	84
29-Jan-14	11:18:11	18	24	60	72	23.2	48	51	85
29-Jan-14	11:18:21	17	23	60	72	24.1	49	50	84
29-Jan-14	11:18:31	17	23	59	71	23.5	48	50	83
29-Jan-14	11:18:41	17	23	59	70	23.0	47	49	82
29-Jan-14	11:18:51	17	23	58	70	23.0	47	49	82
29-Jan-14	11:19:01	15	20	58	68	23.5	48	47	79
29-Jan-14 29-Jan-14	11:19:11 11:19:21	16 15	21 20	58 56	72 71	24.5 24.9	50	49	83
29-Jan-14 29-Jan-14	11:19:31	15	20	56	73	25.8	51 53	48 49	82 84
29-Jan-14	11:19:41	15	20	58	76	27.2	56	50	87
29-Jan-14	11:19:51	15	20	57	80	29.1	60	52	91
29-Jan-14	11:20:01	14	19	57	83	31.3	64	53	93
29-Jan-14	11:20:11	13	17	57	85	33.1	68	53	95
29-Jan-14	11:20:21	13	17	57	89	34.7	71	55	98
29-Jan-14	11:20:31	12	16	57	89	35.4	73	54	97
29-Jan-14	11:20:41	11	15	56	88	35.9	74	53	96
29-Jan-14	11:20:51	10	13	55	87	35.7	73	51	94
29-Jan-14	11:21:01	10	13	54	87	35.8	74	51	94
29-Jan-14 29-Jan-14	11:21:11 11:21:21	9	12 12	53 51	84 83	34.8	71 71	49	90
29-Jan-14 29-Jan-14	11:21:21	8	11	49	80	34.6 33.5	69	48 46	90 85
29-Jan-14 29-Jan-14	11:21:41	7	9	49	77	32.8	67	44	82
29-Jan-14	11:21:51	8	11	44	77	32.2	66	44	83
29-Jan-14	11:22:01	7	9	43	74	31.7	65	42	79
29-Jan-14	11:22:11	6	8	42	72	31.3	64	41	77
29-Jan-14	11:22:21	6	8	41	72	31.2	64	40	76
29-Jan-14	11:22:31	6	8	40	72	31.2	64	40	76
29-Jan-14	11:22:41	. 6	8	40	72	31.2	64	40	76
29-Jan-14	11:22:51	6	8	40	73	31.4	64	41	77
29-Jan-14	11:23:01	5	7	40	72	31.6	65	39	75
29-Jan-14	11:23:11	5	7	39	71	31.5	65	39	75
29-Jan-14 29-Jan-14	11:23:21 11:23:31	5	5 7	39 38	71 73	31.9 32.1	66 66	38 40	74
29-Jan-14 29-Jan-14	11:23:31	5	7	38	73	32.1	66	40	76 77
29-Jan-14	11:23:51	4	5	37	72	32.5	67	39	75
29-Jan-14	11:24:01	4	5	37	74	33.2	68	39	76
29-Jan-14	11:24:11	4	5	37	74	33.3	68	39	77
29-Jan-14	11:24:21	4	5	37	76	34.3	70	40	79
29-Jan-14	11:24:31	4	5	35	76	34.6	71	41	79
29-Jan-14	11:24:41	4	5	35	78	35.4	73	42	81

Date	Time	NO (ppm)	NO (mg/m³)	NOx (ppm)	NOx (mg/m³)	NO ₂ (ppm)	NO ₂ (mg/m ³)	Equiv NO ₂ (ppm)	Equiv NO ₂ (mg/m³)
29-Jan-14	11:24:51	4	5	34	80	36.4	75	43	83
29-Jan-14	11:25:01	4	5	34	81	37.0	76	43	84
29-Jan-14	11:25:11	4	5	33	82	37.3	77	43	85
29-Jan-14 29-Jan-14	11:25:21 11:25:31	4 5	5 7	33 32	83 85	37.8 38.1	78 78	44 46	86 89
29-Jan-14 29-Jan-14	11:25:31	4	5	32	84	38.4	79	45	87
29-Jan-14	11:25:51	5	7	31	86	38.8	80	46	90
29-Jan-14	11:26:01	4	5	30	86	39.2	81	45	89
29-Jan-14	11:26:11	5	7	30	88	39.4	81	47	91
29-Jan-14	11:26:21	5	7	31	90	40.4	83	48	93
29-Jan-14 29-Jan-14	11:26:31 11:26:41	5 6	7 8	31 31	92 95	41.4 42.3	85 87	49 52	95 99
29-Jan-14	11:26:51	7	9	31	97	42.6	87	53	102
29-Jan-14	11:27:01	6	8	31	98	43.8	90	53	102
29-Jan-14	11:27:11	6	8	30	100	45.0	92	54	105
29-Jan-14	11:27:21	7	9	29	103	45.8	94	57	108
29-Jan-14	11:27:31 11:27:41	7	9	29 28	106 108	46.9	96 99	58 59	111
29-Jan-14 29-Jan-14	11:27:51	8	11	27	109	48.0 48.1	99	60	113 115
29-Jan-14	11:28:01	8	11	27	114	50.4	104	63	120
29-Јап-14	11:28:11	8	11	26	115	50.8	104	63	121
29-Jan-14	11:28:21	8	11	25	117	51.9	107	64	123
29-Jan-14	11:28:31	8	11	24	119	52.5	108	65	124
29-Jan-14 29-Jan-14	11:28:41 11:28:51	8 8	11 11	24 24	119 118	52.5 52.0	108 107	65 64	124 123
29-Jan-14 29-Jan-14	11:28:51	9	12	23	118	52.0	107	67	123
29-Jan-14	11:29:11	9	12	23	121	53.1	109	67	128
29-Jan-14	11:29:21	8	11	23	120	53.1	109	65	125
29-Jan-14	11:29:31	8	11	22	121	53.5	110	66	126
29-Jan-14	11:29:41	8	11	22	123	54.5	112	67	128
29-Jan-14 29-Jan-14	11:29:51 11:30:01	8 8	11 11	22 22	123 123	54.9 54.6	113 112	67 67	129 129
29-Jan-14	11:30:11	8	11	22	122	54.1	111	66	128
29-Jan-14	11:30:21	8	11	22	122	54.4	112	67	128
29-Jan-14	11:30:31	8	11	22	122	54.4	112	67	128
29-Jan-14	11:30:41	7	9	21	123	55.5	114	66	128
29-Jan-14	11:30:51	7	9	22 21	125	56.2	115	67 67	130
29-Jan-14 29-Jan-14	11:31:01 11:31:11	7	9	21	125 125	56.5 56.3	116 116	67	130 130
29-Jan-14	11:31:21	7	9	21	125	56.5	116	67	130
29-Jan-14	11:31:31	7	9	21	125	56.5	116	67	130
29-Jan-14	11:31:41	7	9	21	126	56.9	117	68	131
29-Jan-14	11:31:51	88	11	21	128	56.9	117	69	133
29-Jan-14 29-Jan-14	11:32:01 11:32:11	8 8	11 11	20 21	128 129	57.1 57.8	117 119	69 70	134 135
29-Jan-14	11:32:11	7	9	20	128	57.6	118	68	133
29-Jan-14	11:32:31	7	9	20	128	58.0	119	69	133
29-Jan-14	11:32:41	7	9	20	128	58.0	119	69	133
29-Jan-14	11:32:51	8	11	19	130	58.1	119	70	136
29-Jan-14	11:33:01	7	9	19	129	58.3	120	69	134
29-Jan-14 29-Jan-14	11:33:11 11:33:21	7 6	9 8	19 19	131 130	59.1 59.2	121 122	70 68	136 134
29-Jan-14 29-Jan-14	11:33:31	7	9	19	131	59.2	122	70	136
29-Jan-14	11:33:41	7	9	19	130	58.6	120	69	135
29-Jan-14	11:33:51	7	9	19	129	58.4	120	69	134
29-Jan-14	11:34:01	6	8	19	128	58.3	120	68	132
29-Jan-14	11:34:11	8	11	20	130	58.3	120	71	136
29-Jan-14 29-Jan-14	11:34:21 11:34:31	7 8	9 11	19 19	129 131	58.3 58.7	120 121	69 71	134 137
29-Jan-14	11:34:41	7	9	19	129	58.3	120	69	134
29-Jan-14	11:34:51	7	9	19	133	60.0	123	71	138
29-Jan-14	11:35:01	6	8	19	130	59.6	122	69	135
29-Jan-14	11:35:11	6	8	19	127	58.1	119	67	132
29-Jan-14	11:35:21	6 5	- 8 7	19 20	126 126	57.6	118	67 66	131
29-Jan-14 29-Jan-14	11:35:31 11:35:41	6	8	19	126	58.0 58.0	119 119	67	129 131
29-Jan-14	11:35:51	6	8	19	127	58.1	119	67	132
29-Jan-14	11:36:01	5	7	19	126	58.2	120	66	130
29-Jan-14	11:36:11	5	7	19	127	58.6	120	66	131
29-Jan-14	11:36:21	5	7	19	126	58.2	120	66	130
29-Jan-14	11:36:31	6	8	19 18	129 129	59.1	121	68 67	134
29-Jan-14 29-Jan-14	11:36:41 11:36:51	5 5	7	19	129	59.5 59.3	122 122	67 67	132 132
29-Jan-14	11:37:01	5	7	18	130	59.8	123	67	133
29-Jan-14	11:37:11	6	8	19	130	59.5	122	69	135
29-Jan-14	11:37:21	5	7	18	130	59.9	123	68	133
29-Jan-14	11:37:31	4	5	19	128	59.7	123	66	131

60305580 Kiln 1 Oxides of Nitrogen Results, 29 January 2014

Date	Time	NO (ppm)	NO (mg/m³)	NOx (ppm)	NOx (mg/m³)	NO ₂ (ppm)	NO ₂ (mg/m ³)	Equiv NO ₂ (ppm)	Equiv NO ₂ (mg/m ³)
29-Jan-14	11:37:41	5	7	18	129	59.7	123	67	133
29-Jan-14	11:37:51	5	7	18	131	60.5	124	68	135
29-Jan-14	11:38:01	5	7	19	132	60.8	125	68	135
29-Jan-14	11:38:11	5	7	19	131	60.7	125	68	135
29-Jan-14	11:38:21	5	7	19	131	60.7	125	68	135
29-Jan-14	11:38:31	5	7	18	133	61.5	126	69	137
29-Jan-14	11:38:41	5	7	18	132	60.9	125	69	135
29-Jan-14	11:38:51	5	7	18	133	61.3	126	69	136
29-Jan-14	11:39:01	4	5	18	131	61.3	126	67	134
29-Jan-14	11:39:11	4	5	18	131	61.0	125	67	133
29-Jan-14	11:39:21	5	7	18	132	60.9	125		
29-Jan-14	11:39:31	4	5	18	132	61.9	125	69	135
29-Jan-14	11:39:41	4	5					68	135
29-Jan-14	11:39:51	4	5	18 19	134	62.5	128	69	137
29-Jan-14					134	62.8	129	69	137
	11:40:01	4	5	18	136	63.4	130	70	138
29-Jan-14	11:40:11	4	5	19	138	64.5	132	71	141
29-Jan-14	11:40:21	4	5	. 19	135	63.2	130	69	138
29-Jan-14	11:40:31	4	5	19	134	62.5	128	69	137
29-Jan-14	11:40:41	4	5	19	135	62.9	129	69	137
29-Jan-14	11:40:51	3	4	19	133	62.6	129	67	135
29-Jan-14	11:41:01	4	5	18	133	62.1	128	68	136
29-Jan-14	11:41:11	3	4	19	133	62.8	129	67	135
29-Jan-14	11:41:21	2	3	18	132	62.9	129	66	133
29-Jan-14	11:41:31	3	4	19	132	62.4	128	_ 67	134
29-Jan-14	11:41:41	3	4	19	134	63.1	130	68	136
29-Jan-14	11:41:51	3	. 4	19	133	62.6	129	67	135
29-Jan-14	11:42:01	3	4	19	132	62.3	128	67	134
29-Jan-14	11:42:11	3	4	18	131	62.0	127	67	133
29-Jan-14	11:42:21	4	5	19	131	61.3	126	67	134
29-Jan-14	11:42:31	4	5	18	127	59.2	122	65	130
29-Jan-14	11:42:41	5	7	18	125	57.6	118	65	129
29-Jan-14	11:42:51	6	8	18	124	56.5	116	66	128
29-Jan-14	11:43:01	6	8	18	123	55.8	115	65	127
29-Jan-14	11:43:11	6	8	18	123	55.9	115	65	127
29-Jan-14	11:43:21	6	8	17	122	55.4	114	65	126
29-Jan-14	11:43:31	5	7	17	121	55.8	115	63	125
29-Jan-14	11:43:41	5	7	17	122	56.0	115	64	125
29-Jan-14	11:43:51	5	7	17	124	57.2	117	65	128
29-Јап-14	11:44:01	5	7	17	124	57.1	117	65	128
29-Jan-14	11:44:11	5	7	17	125	57.4	118	65	128
29-Jan-14	11:44:21	4	5	18	123	57.2	117	63	126
29-Jan-14	11:44:31	4	5	17	122	56.8	117	63	125
29-Jan-14	11:44:41	4	5	18	121	56.4	116	63	124
29-Jan-14	11:44:51	4	5	18	120	55.8	115	62	123
29-Jan-14	11:45:01	4	5	18	119	55.5	114	62	122
29-Jan-14	11:45:11	4	5	19	118	54.9	113	61	121
29-Jan-14	11:45:21	4	5	20	115	53.5	110	60	118
29-Jan-14	11:45:31	4	5	20	115	53.2	109	59	117
	11:45:41	5	7	22	115	52.9	109	61	119
29-Jan-14		4	5	22	114	52.8	108	59	117
29-Jan-14	11:46:01	4	5	23	114	53.1	109	59	117
29-Jan-14	11:46:11	4	5	24	114	52.9	109	59	117
	11:46:21	4	5	24	113	52.4	108	59	116
Avera		10	13	45	115	50	102	65	
Maxin	_	20	27	75	138	65	132	78	122
Minim		2	3	17	68	23	47		146
Corrected t		6	8	28	70	30	63	38	74
Jonnected t	0 10/3 OZ		U	40	10	3U	93	39	75

Date Time NO (ppm) NO (mg/m³) N	IOx (ppm)	NOx (mg/m³)	NO ₂ (ppm)	NO ₂ (mg/m ³)	Equiv NO ₂ (ppm)	Equiv NO ₂ (mg/m ³)
31-Jan-14 9:10:50 12 16	77	149	64.8	133	83	158
31-Jan-14 9:11:00 12 16	77	149	64.7	133	83	158
31-Jan-14 9:11:10 12 16	77	150	65.1	134	84	158
31-Jan-14 9:11:20 13 17	78	151	65.1	134	85	160
31-Jan-14 9:11:30 12 16	77	149	64.8	133	83	158
31-Jan-14 9:11:40 11 15 31-Jan-14 9:11:50 12 16	77 77	149 151	65.2	134	82	156
31-Jan-14 9:12:00 12 16	77	150	65.6 65.4	135 134	84	159
31-Jan-14 9:12:10 11 15	77	149	65.6	135	84 82	159 157
31-Jan-14 9:12:20 11 15	77	150	65.7	135	83	158
31-Jan-14 9:12:30 11 15	77	150	65.9	135	83	158
31-Jan-14 9:12:40 11 15	78	151	66.5	137	83	159
31-Jan-14 9:12:50 11 15	78	152	66.8	137	84	160
31-Jan-14 9:13:00 12 16	78	152	66.4	136	85	161
31-Jan-14 9:13:10 12 16 31-Jan-14 9:13:20 12 16	78	151	65.8	135	84	160
31-Jan-14 9:13:20 12 16 31-Jan-14 9:13:30 11 15	77 76	151	65.5	135	84	159
31-Jan-14 9:13:40 12 16	77	148 150	65.0 65.0	133 133	82 83	156
31-Jan-14 9:13:50 12 16	77	151	65.5	135	84	158 159
31-Jan-14 9:14:00 12 16	78	152	66.2	136	85	161
31-Jan-14 9:14:10 12 16	79	154	67.4	138	86	163
31-Jan-14 9:14:20 11 15	79	153	67.5	139	84	161
31-Jan-14 9:14:30 11 15	79	153	67.2	138	84	161
31-Jan-14 9:14:40 12 16	79	154	67.0	138	85	162
31-Jan-14 9:14:50 12 16 31-Jan-14 9:15:00 11 15	80	155	67.8	139	86	164
31-Jan-14 9:15:00 11 15 31-Jan-14 9:15:10 12 16	79 79	153 154	67.4 67.4	138 138	84	161
31-Jan-14 9:15:20 11 15	80	155	68.1	140	86	163
31-Jan-14 9:15:30 12 16	80	155	67.8	139	85 86	162 164
31-Jan-14 9:15:40 12 16	79	154	67.1	138	86	162
31-Jan-14 9:15:50 12 16	78	152	66.3	136	85	161
31-Jan-14 9:16:00 12 16	77	151	65.6	135	84	159
31-Jan-14 9:16:10 12 16	77	150	65.4	134	84	159
31-Jan-14 9:16:20 12 16	77	151	65.8	135	84	160
31-Jan-14 9:16:30 12 16 31-Jan-14 9:16:40 12 16	78 78	151 151	65.6	135	84	159
31-Jan-14 9:16:50 13 17	78	152	65.5 65.7	135 135	84 86	159
31-Jan-14 9:17:00 12 16	78	152	66.2	136	85	162 161
31-Jan-14 9:17:10 12 16	78	152	66.2	136	85	161
31-Jan-14 9:17:20 12 16	79	153	66.8	137	85	162
31-Jan-14 9:17:30 11 15	78	153	67.2	138	84	161
31-Jan-14 9:17:40 12 16	79	155	67.7	139	86	164
31-Jan-14 9:17:50 11 15 31-Jan-14 9:18:00 12 16	78	152	66.9	137	84	160
31-Jan-14 9:18:00 12 16 31-Jan-14 9:18:10 12 16	78 78	152 153	66.4	136	85	161
31-Jan-14 9:18:20 12 16	79	153	66.9 66.9	137 137	85 85	162 162
31-Jan-14 9:18:30 12 16	78	153	66.5	137	85	161
31-Jan-14 9:18:40 12 16	79	154	67.1	138	86	162
31-Jan-14 9:18:50 12 16	79	155	67.5	139	86	163
31-Jan-14 9:19:00 12 16	79	155	67.5	139	86	163
31-Jan-14 9:19:10 12 16	79	155	67.8	139	86	164
31-Jan-14 9:19:20 11 15 31-Jan-14 9:19:30 11 15	80	156	68.6	141	85	163
31-Jan-14 9:19:30 11 15 31-Jan-14 9:19:40 12 16	79 78	153 152	67.4 66.4	138 136	84	161
31-Jan-14 9:19:50 12 16	78	153	66.5	136	85 85	161
31-Jan-14 9:20:00 12 16	78	152	66.3	136	85	161 161
31-Jan-14 9:20:10 12 16	79	154	67.0	138	85	162
31-Jan-14 9:20:20 12 16	80	155	67.6	139	86	163
31-Jan-14 9:20:30 12 16	79	155	67.6	139	86	163
31-Jan-14 9:20:40 11 15	79	153	67.5	139	84	161
31-Jan-14 9:20:50 12 16 31-Jan-14 9:21:00 12 16	80	156	68.2	140	87	165
31-Jan-14 9:21:00 12 16 31-Jan-14 9:21:10 11 15	80 79	157 153	68.6	141	87	166
31-Jan-14 9:21:20 12 16	79	153	67.3 67.6	138 139	84 86	161
31-Jan-14 9:21:30 12 16	79	155	67.8	139	86	<u>163</u> 164
31-Jan-14 9:21:40 11 15	79	153	67.3	138	84	161
31-Jan-14 9:21:50 12 16	79	155	67.8	139	86	164
31-Jan-14 9:22:00 12 16	80	156	68.1	140	87	164
31-Jan-14 9:22:10 12 16	79	155	67.8	139	86	164
31-Jan-14 9:22:20 11 15	79	154	67.9	139	85	162
31-Jan-14 9:22:30 11 15 31-Jan-14 9:22:40 11 15	80	156	68.6	141	85	163
31-Jan-14 9:22:50 11 15	79	156 154	68.6 67.6	141 139	85 84	163
31-Jan-14 9:23:00 12 16	80	156	68.2	140	87	161 165
31-Jan-14 9:23:10 12 16	80	156	68.1	140	87	164
31-Jan-14 9:23:20 11 15	79	154	67.6	139	84	161
31-Jan-14 9:23:30 12 16	79	154	67.3	138	86	163

Date	Time	NO (ppm)	NO (mg/m³)	NOx (ppm)	NOx (mg/m³)	NO ₂ (ppm)	NO ₂ (mg/m ³)	Equiv NO ₂ (ppm)	Equiv NO ₂ (mg/m ³)
31-Jan-14	9:23:40	11 11	15	78	152	66.8	137	84	160
31-Jan-14	9:23:50	11	15	79	153	67.4	138	84	161
31-Jan-14	9:24:00	11	15	78	153	67.3	138	84	161
31-Jan-14	9:24:10	11	15	80	156	68.7	141	86	164
31-Jan-14	9:24:20	11	15	80	156	68.9	141	86	164
31-Jan-14	9:24:30	11	15	79	154	67.7	139	85	162
31-Jan-14	9:24:40	11	15	79	154	68.0	140	85	162
31-Jan-14	9:24:50	11	15	80	156	68.6	141	85 85	163 162
31-Jan-14	9:25:00	11	15 15	79 79	154 155	68.0 68.1	140 140	85	162
31-Jan-14 31-Jan-14	9:25:10 9:25:20	11	15	80	156	68.7	141	86	164
31-Jan-14	9:25:30	11	15	79	156	68.6	141	85	163
31-Jan-14	9:25:40	11	15	79	155	68.5	141	85	163
31-Jan-14	9:25:50	10	13	80	156	69.6	143	85	163
31-Jan-14	9:26:00	11	15	81	158	69.8	143	87	166
31-Jan-14	9:26:10	12	16	81	158	69.0	142	87	166
31-Jan-14	9:26:20	11	15	81	157	69.4	143	86	165
31-Jan-14	9:26:30	11	15	80	156	69.0	142	86	164
31-Jan-14	9:26:40	11	15	80	155	68.5	141 141	85 86	163 164
31-Jan-14	9:26:50	11	15	80 81	156 157	68.8 69.5	143	86	165
31-Jan-14 31-Jan-14	9:27:00 9:27:10	11	15 15	80	156	69.0	143	86	164
31-Jan-14 31-Jan-14	9:27:10	11	15	81	158	69.8	143	87	166
31-Jan-14	9:27:30	11 -	15	81	160	70.6	145	87	168
31-Jan-14	9:27:40	11	15	82	160	70.7	145	88	168
31-Jan-14	9:27:50	11	15	81	160	70.8	145	.88	168
31-Jan-14	9:28:00	10	13	80	157	70.1	144	85	164
31-Jan-14	9:28:10	11	15	80	157	69.5	143	86	165
31-Jan-14	9:28:20	11	15	81	158	69.6	143	86	166
31-Jan-14	9:28:30	11	15	81	159	70.2	144	87	167 165
31-Jan-14	9:28:40	11	15 15	80 81	157 158	69.4 69.8	143 143	86 87	166
31-Jan-14	9:28:50 9:29:00	11	15	81	159	70.1	144	87	167
31-Jan-14 31-Jan-14	9:29:00	11	15	81	158	69.8	143	87	166
31-Jan-14	9:29:20	11	15	80	158	69.6	143	86	166
31-Jan-14	9:29:30	11	15	81	158	69.6	143	86	166
31-Jan-14	9:29:40	12	16	81	159	69.4	143	88	167
31-Jan-14	9:29:50	11	15	81	158	69.6	143	86	166
31-Jan-14	9:30:00	12	16	81	158	69.1	142	88	167
31-Jan-14	9:30:10	12	16	81	159	69.4	143	88	167
31-Jan-14_	9:30:20	11	15	80	156	68.8	141	86	164
31-Jan-14	9:30:30	11	15	80	156	68.6	141 143	85 86	163 165
31-Jan-14	9:30:40	11 12	15 16	81 83	1 <u>57</u> 162	69.5 70.9	143	89	170
31-Jan-14 31-Jan-14	9:30:50 9:31:00	11	15	82	160	70.5	145	87	167
31-Jan-14	9:31:10	11	15	81	158	69.9	144	87	166
31-Jan-14	9:31:20	11	15	80	157	69.5	143	86	165
31-Jan-14	9:31:30	11	15	81	157	69.4	143	86	165
31-Jan-14	9:31:40	11	15	82	160	70.5	145	87	167
31-Jan-14	9:31:50	11	15	81	159	70.2	144	87	167
31-Jan-14	9:32:00	11	15	81	159	70.2	144	87	167
31-Jan-14	9:32:10	11	15	81	159	70.3	144	87	167
31-Jan-14	9:32:20	11	15	82	160	70.8	145	88	168
31-Jan-14	9:32:30	11	15	82	160 162	70.8 71.5	145 147	88 88	168 169
31-Jan-14 31-Jan-14	9:32:40 9:32:50	11	15 15	82 81	158	70.0	144	87	166
31-Jan-14 31-Jan-14	9:32:50	11	15	80	157	69.4	143	86	165
31-Jan-14	9:33:10	11	15	81	159	70.4	145	87	167
31-Jan-14	9:33:20	11	15	82	160	70.5	145	87	167
31-Jan-14	9:33:30	11	15	81	160	70.8	145	88	168
31-Jan-14	9:33:40	10	13	82	160	71.3	146	87	167
31-Jan-14	9:33:50	10	13	82	161	71.7	147	87	168
31-Jan-14	9:34:00	10	13	82	162	72.3	148	88	169
31-Jan-14	9:34:10	10	13	83	163	72.9	150	88	170
31-Jan-14	9:34:20	10	13	83	162	72.6 72.0	149 148	88 87	170 168
31-Jan-14 31-Jan-14	9:34:30 9:34:40	10 10	13 13	83	161 160	71.6	147	87	168
31-Jan-14 31-Jan-14	9:34:40	10	13	81	158	70.3	144	86	165
31-Jan-14 31-Jan-14	9:35:00	10	13	80	157	70.0	144	85	164
31-Jan-14	9:35:10	11	15	80	156	69.0	142	86	164
31-Jan-14	9:35:20	11	15	80	155	68.5	141	85	163
31-Jan-14	9:35:30	11	15	80_	155	68.5	141	85	163
31-Jan-14	9:35:40	11	15	80	156	68.7	141	86	164
31-Jan-14	9:35:50	11	15	80	157	69.4	143	86	165
31-Jan-14	9:36:00	11	15	80	158	69.7	143	87	166
31-Jan-14	9:36:10_	11	15	80	157	69.3	142	86	165
31-Jan-14	9:36:20	11	15	81	159	70.1	144	87	167

Date	Time	NO (ppm)	NO (mg/m³)	NOx (ppm)	NOx (mg/m³)	NO ₂ (ppm)	NO ₂ (mg/m ³)	Equiv NO. (new)	F-15, NO (1-3)
31-Jan-14	9:36:30	10	13	82	161	71.7	147	Equiv NO ₂ (ppm) 87	Equiv NO ₂ (mg/m ³) 168
31-Jan-14	9:36:40	10	13	83	162	72.5	149	88	169
31-Jan-14	9:36:50	10	13	82	163	72.7	149	88	170
31-Jan-14	9:37:00	9	12	82	161	72.3	148	86	167
31-Jan-14	9:37:10	9	12	81	161	72.3	148	86	167
31-Jan-14	9:37:20	9	12	82	162	73.2	150	87	169
31-Jan-14 31-Jan-14	9:37:30 9:37:40	9	12 12	83 84	164	74.2	152	88	171
31-Jan-14	9:37:50	9	12	82	165 163	74.5 73.3	153 151	88 87	171
31-Jan-14	9:38:00	9	12	82	162	73.0	150	87	169 168
31-Jan-14	9:38:10	9	12	83	163	73.7	151	88	170
31-Jan-14	9:38:20	9	12	83	164	73.8	152	88	170
31-Jan-14	9:38:30	9	12	83	163	73.7	151	88	170
31-Jan-14	9:38:40	9	12	82	163	73.5	151	87	169
31-Jan-14	9:38:50 9:39:00	9	12	83	164	73.9	152	88	170
31-Jan-14 31-Jan-14	9:39:00	9	12 12	83 84	164	73.8	152	88	170
31-Jan-14	9:39:20	9	12	83	166 165	74.8 74.5	154 153	89 88	172
31-Jan-14	9:39:30	9	12	82	162	73.2	150	87	171 169
31-Jan-14	9:39:40	9	12	82	162	73.0	150	87	168
31-Jan-14	9:39:50	9	12	81	160	72.0	148	86	166
31-Jan-14	9:40:00	9	12	81	159	71.4	147	85	165
31-Jan-14	9:40:10	10	13	80	158	70.6	145	86	166
31-Jan-14	9:40:20 9:40:30	10	13	81	158	70.4	145	86	165
31-Jan-14 31-Jan-14	9:40:30	10 10	13	80 81	157	70.1	144	85	164
31-Jan-14	9:40:50	9	12	82	159 161	70.9 72.5	146 149	86 86	166
31-Jan-14	9:41:00	10	13	82	162	72.2	149	88	167 169
31-Jan-14	9:41:10	10	13	80	158	70.5	145	86	165
31-Jan-14	9:41:20	10	13	80	157	70.1	144	85	164
31-Jan-14	9:41:30	10	13	79	156	69.4	143	85	163
31-Jan-14	9:41:40	10	13	79	155	69.1	142	84	162
31-Jan-14	9:41:50 9:42:00	10	13	79	154	68.6	141	84	161
31-Jan-14 31-Jan-14	9:42:10	10	13 13	79 78	154 153	68.3 68.1	140 140	84	161
31-Jan-14	9:42:20	10	13	78	152	67.3	138	83 83	160 159
31-Jan-14	9:42:30	10	13	78	153	67.9	139	83	160
31-Jan-14	9:42:40	10	13	78	153	67.9	139	83	160
31-Jan-14	9:42:50	10	13	76	150	66.7	137	82	158
31-Jan-14	9:43:00	10	13	77_	152	67.5	139	83	159
31-Jan-14 31-Jan-14	9:43:10	10	13	77	150	66.5	137	82	157
31-Jan-14	9:43:20 9:43:30	10 10	13 13	76 76	150	66.6	137	82	157
31-Jan-14	9:43:40	9	12	76	150 149	66.7 66.5	137 137	82 80	158
31-Jan-14	9:43:50	10	13	76	150	66.4	136	82	155 157
31-Jan-14	9:44:00	10	13	77	151	67.0	138	82	158
31-Jan-14	9:44:10	10	13	78	153	68.2	140	84	161
31-Jan-14	9:44:20	10	13	77	153	67.8	139	83	160
31-Jan-14	9:44:30	9	12	77	150	67.2	138	81	156
31-Jan-14	9:44:40	9	12	77	151	67.5	139	81	157
31-Jan-14 31-Jan-14	9:44:50 9:45:00	9	12 12	76 77	150 151	67.3 6 7 .7	138 139	81	157
31-Jan-14	9:45:10	9	12	76	151	67.6	139	82 81	158 157
31-Jan-14	9:45:20	9	12	76	150	67.1	138	81	156
31-Jan-14	9:45:30	9	12	76	149	66.8	137	81	156
31-Jan-14	9:45:40	9	12	77	151	67.7	139	82	158
31-Jan-14	9:45:50	9	12	77	152	68.3	140	82	159
31-Jan-14	9:46:00	9	12	77	151	67.9	139	82	158
31-Jan-14 31-Jan-14	9:46:10 9:46:20	9	12 12	77 76	151	67.8	139	82	158
31-Jan-14	9:46:30	9 9	12	76	148 149	66.3 66.5	136 137	80	155
31-Jan-14	9:46:40	9	12	76	150	67.0	138	81	155 156
31-Jan-14	9:46:50	8	11	76	150	67.9	139	80	156
31-Jan-14	9:47:00	9	12	77	152	68.2	140	82	159
31-Jan-14	9:47:10	9	12	77	151	67.9	139	82	158
31-Jan-14	9:47:20	9	12	77	151	67.8	139	82	158
31-Jan-14	9:47:30	9	12	77	151	67.8	139	82	158
31-Jan-14 31-Jan-14	9:47:40 9:47:50	9	12 12	77 77	151	67.8	139	82	158
31-Jan-14	9:48:00	9	12	77	152 153	68.2 68.7	140 141	82 83	159
31-Jan-14	9:48:10	8	11	77	152	68.7	141	81	160 158
31-Jan-14	9:48:20	9	12	78	154	69.2	142	83	161
31-Jan-14	9:48:30	9	12	78	153	68.7	141	83	160
31-Jan-14	9:48:40	9	12	78	154	69.0	142	83	160
31-Jan-14	9:48:50	. 8	11	78	154	69.6	143	82	159
31-Jan-14	9:49:00	8	11	78	154	69.8	143	82	160
31-Jan-14	9:49:10	9	12	79	156	70.3	144	84	163

Date	Time	NO (ppm)	NO (mg/m³)	NOx (ppm)	NOx (mg/m³)	NO ₂ (ppm)	NO ₂ (mg/m³)	Equiv NO ₂ (ppm)	Equiv NO ₂ (mg/m ³)
31-Jan-14	9:49:20	8	11	79	155	70.2	144	82	161
31-Jan-14	9:49:30	9	12	78	155	69.4	143	83	161
31-Jan-14	9:49:40	8	11	78	153	69.3	142	82	159
31-Jan-14	9:49:50	8	11	78	154	70.0	144	82	160
31-Jan-14	9:50:00	8	11	79	156	70.7	145	83	162
31-Jan-14	9:50:10	8	11	79	156	70.8	145	83	162 161
31-Jan-14	9:50:20	8	11	78 78	155 154	70.3 69.6	144 143	83 82	159
31-Jan-14	9:50:30 9:50:40	8 8	11	78	154	69.8	143	82	160
31-Jan-14 31-Jan-14	9:50:40	8	11	78	155	70.2	144	82	161
31-Jan-14	9:51:00	8	11	80	158	71.5	147	84	163
31-Jan-14	9:51:10	8	11	79	157	71.2	146	83	163
31-Jan-14	9:51:20	8	11	78	155	70.4	145	83	161
31-Jan-14	9:51:30	8	11	79	156	70.9	146	83	162
31-Jan-14	9:51:40	8	11	79	156	70.6	145	83	161
31-Jan-14	9:51:50	8	11	78	155	70.4	145	83	161
31-Jan-14	9:52:00	8	11	78	155	70.1	144	82	160
31-Jan-14	9:52:10	8	11	78	156	70.7	145	83	162 161
31-Jan-14	9:52:20	8	11	78 .	155	70.5 69.9	145 144	83 82	160
31-Jan-14	9:52:30	8	11	78 78	154 155	70.4	145	83	161
31-Jan-14 31-Jan-14	9:52:40 9:52:50	8 7	9	77	153	70.4	144	81	158
31-Jan-14 31-Jan-14	9:53:00	7	9	78	155	70.9	146	82	160
31-Jan-14	9:53:10	7	9	79	157	72.1	148	83	162
31-Jan-14	9:53:20	7	9	79	158	72.2	148	83	163
31-Jan-14	9:53:30	7	9	78	156	71.4	147	82	161
31-Jan-14	9:53:40	7	9	79	157	71.7	147	82	162
31-Jan-14	9:53:50	8	11	80	158	71.9	148	84	164
31-Jan-14	9:54:00	7	9	79	156	71.6	147	82	161
31-Jan-14	9:54:10	7	9	78	155	70.9	146 143	82 81	160 158
31-Jan-14	9:54:20	7	9	77 76	153 151	69.8 68.8	143	80	156
31-Jan-14 31-Jan-14	9:54:30 9:54:40	8	11	76	152	68.7	141	81	158
31-Jan-14	9:54:50	8	11 -	76	151	68.2	140	80	156
31-Jan-14	9:55:00	8	11	76	152	68.7	141	B1	158
31-Jan-14	9:55:10	7	9	76	149	68.2	140	79	154
31-Jan-14	9:55:20	7	9	75	149	67.9	139	79	154
31-Jan-14	9:55:30	7	9	75	150	68.3	140	79	155
31-Jan-14	9:55:40	7	9	75	150	68.5	141	79	155
31-Jan-14	9:55:50	7	9	77	154	70.3	144	81	159
31-Jan-14	9:56:00	7	9	78	155	70.9	146	82 80	160 157
31-Jan-14	9:56:10	7	9 9	_76 	152 152	69.5 69.6	143 143	80	157
31-Jan-14 31-Jan-14	9:56:20 9:56:30	6	8	77	153	70.5	145	80	157
31-Jan-14	9:56:40	6	8	77	153	70.5	145	80	157
31-Jan-14	9:56:50	7	9	78	156	71.6	147	82	161
31-Jan-14	9:57:00	7	9	78	156	71.4	147	82	161
31-Jan-14	9:57:10	7	9	77	154	70.2	144	81	159
31-Jan-14	9:57:20	7	_9	76	153	69.8	143	81	158
31-Jan-14	9:57:30	7	9	77	154	70.6	145	81	159
31-Jan-14	9:57:40	7	9	77	153	69.9	144	81	158
31-Jan-14	9:57:50	7	9	76	151	69.0	142	80	156 156
31-Jan-14	9:58:00 9:58:10	7	9 8	76 75	151 150	68.8 68.9	141 141	80 78	154
31-Jan-14 31-Jan-14	9:58:10	7	9	75	150	68.6	141	79	155
31-Jan-14 31-Jan-14	9:58:30	7	9	76	151	68.8	141	80	156
31-Jan-14	9:58:40	7	9	75	150	68.4	140	79	155
31-Jan-14	9:58:50	7	9	75	149	68.0	140	79	154
31-Jan-14	9:59:00	7	9	76	150	68.7	141	79	155
31-Jan-14	9:59:10	6	8	76	151	69.4	143	79	155
31-Jan-14	9:59:20	6	8	75	151	69.4	143	79	155
31-Jan-14	9:59:30	6	8	75	149	68.7	141	78	153
31-Jan-14	9:59:40	7	9	76	151	69.0	142	80	156
31-Jan-14	9:59:50	7	.9	76	151	69.2	142	80 78	156
31-Jan-14	10:00:00	6	8	75	150	69.1	142	78 80	154 156
31-Jan-14	10:00:10 10:00:20	7	9	75 74	151 149	68.8 68.0	141	79	154
31-Jan-14 31-Jan-14	10:00:20	6	8	74	147	67.7	139	77	151
31-Jan-14 31-Jan-14	10:00:30	7	9	75	151	68.9	141	80	156
31-Jan-14	10:00:40	6	8	76	151	69.8	143	79	156
31-Jan-14	10:01:00	6	8	76	151	69.8	143	79	156
31-Jan-14	10:01:10	6	8	76	151	69.6	143	79	155
31-Jan-14	10:01:20	6	8	76	151	69.8	143	79	156
31-Jan-14	10:01:30	6	8	76	153	70.6	145	80	157
31-Jan-14	10:01:40	6	8	77	154	71.0	146	80	158
31-Jan-14	10:01:50	6	8	77	155	71.4	147	81	159
31-Jan-14	10:02:00	5	7	77	154	71.6	147	79	157

60305580 Kiln 2 Oxides of Nitrogen Results, 31 January 2014

Date	Time	NO (ppm)	NO (mg/m³)	NOx (ppm)	NOx (mg/m³)	NO ₂ (ppm)	NO ₂ (mg/m ³)	Equiv NO ₂ (ppm)	Equiv NO ₂ (mg/m ³)
31-Jan-14	10:02:10	5	7	77	154	71.8	147	79	158
31-Jan-14	10:02:20	5	7	77	155	72.1	148	80	158
31-Jan-14	10:02:30	5	7	78	156	72.8	150	80	160
31-Jan-14	10:02:40	5	7	78	156	72.9	150	81	160
31-Jan-14	10:02:50	5	7	77	155	72.3	148	80	159
31-Jan-14	10:03:00	5	7	76	154	71.7	147	79	158
31-Jan-14	10:03:10	5	7	76	154	71.9	148	80	158
31-Jan-14	10:03:20	5	7	77	154	71.9	148	80	158
31-Jan-14	10:03:30	5	7_	76	153	71.3	146	79	157
31-Jan-14	10:03:40	5	7	76	153	71.1	146	79	156
31-Jan-14	10:03:50	5	7	76	153	71.2	14 6	79	156
31-Jan-14	10:04:00	5	7	76	154	71.7	147	79	158
31-Jan-14	10:04:10	5	7	76	154	71.5	147	79	157
31-Јап-14	10:04:20	5	_ 7	77	154	71.9	148	80	158
31-Jan-14	10:04:30	5	7	77	156	72.5	149	80	159
31-Jan-14	10:04:40	5	7	76	154	71.5	147	79	157
31-Jan-14	10:04:50	5	7	75	151	70.4	145	78	155
31-Jan-14	10:05:00	5	7	75	151	70.2	144	78	154
31-Jan-14	10:05:10	5	7	75	151	70.1	144	78	154
31-Jan-14	10:05:20	5	7	75	150	69.9	144	78	154
31-Jan-14	10:05:30	4	5	76	152	71.3	146	77	155
31-Jan-14	10:05:40	4	5	75	151	70.7	145	77	153
31-Jan-14	10:05:50	5	7	75	152	70.8	145	78	156
31-Jan-14	10:06:00	5	7	76	153	71.0	146	79	156
31-Jan-14	10:06:10	5	7	76	154	71.6	147	79	157
31-Jan-14	10:06:20	4	5	75	152	71.2	146	77	154
31-Jan-14	10:06:30	4	5	75	151	70.9	146	77	154
31-Jan-14	10:06:40	4	5	75	151	70.7	145	77	153
31-Jan-14 31-Jan-14	10:06:50 10:07:00	4	5	74	149	70.0	144	76	152
31-Jan-14 31-Jan-14	10:07:10	4	5 5	74 74	149 149	69.9	144	76 76	152
31-Jan-14	10:07:10	5	7	74	150	70.0 69.9	144 144	78	152 154
31-Jan-14	10:07:20	5	7	75	151	70.2	144	78	154
31-Jan-14	10:07:40	5	7	74	149	69.4	143	77	153
31-Jan-14	10:07:50	5	7	73	145	67.5	139	75	149
31-Jan-14	10:08:00	5	7	72	144	67.1	138	75	148
31-Jan-14	10:08:10	5	7	72	145	67.1	138	75	148
31-Jan-14	10:08:20	5	7	72	146	67.6	139	75	149
31-Jan-14	10:08:30	4	5	73	146	68.6	141	75	149
31-Jan-14	10:08:40	4	5	73	148	69.4	143	76	151
31-Jan-14	10:08:50	4	5	74	150	70.2	144	76	152
31-Jan-14	10:09:00	3	4	74	149	70.4	145	75	151
31-Jan-14	10:09:10	3	4	74	149	70.5	145	75	151
31-Jan-14	10:09:20	3	4	73	149	70.7	145	75	151
31-Jan-14	10:09:30	3	4	73	148	70.2	144	75	150
31-Jan-14	10:09:40	3	4	73	148	70.0	144	75	150
31-Jan-14	10:09:50	3	4	73	149	70.5	145	75	151
31-Jan-14	10:10:00	3	4	73	148	70.3	144	75	151
	10:10:10	3	4	73	148	70.0	144	75	150
31-Jan-14	10:10:20	2	3	72	146	70.0	144	73	148
31-Jan-14	10:10:30	3	4	73	149	70.5	145	75	151
31-Jan-14	10:10:40	3	4	73	149	70.7	145	75	151
31-Jan-14	10:10:50	3	4	73	149	70.6	145	75	151
Aver	age	9	12	78	154	69	142	83	161
Maxir	num	13	17	84	166	75	154	89	172
Minin		2	3	72	144	65	133	73	148
Corrected t	to 18% O2	5	7	43	84	38	78	45	88

AECOM
AECOM Australia Pty Ltd
17 Warabrook Boulevarde
Warabrook NSW 2304
PO Box 73
Hunter Region MC NSW 2330
Australia
T +61 2 4911 4900
F +61 2 4911 4999
www.aecom.com

ABN 20 093 846 925

